高温高压下液态水声速的研究不同状态方程的准确性验证

李芳菲 崔启良 李敏 周强 邹广田

引用本文:
Citation:

高温高压下液态水声速的研究不同状态方程的准确性验证

    通讯作者: 周强; 

Acoustic Velocity of Water under High Temperature and High Pressure: Validity of the Equation of State of Water

    Corresponding author: ZHOU Qiang
  • 摘要: 研究水的热力学状态方程,对于理解地球及行星科学等起着重要作用,但由于高温高压区域的实验数据较少,该区域的状态方程主要依赖于由低压部分外延或分子动力学模拟计算得到。采用布里渊散射技术测量熔解曲线附近液态水的声速,低温区采用电加热系统,高温区采用激光加热布里渊散射系统,分析比较了由实验测量得到的声速值与用经验状态方程计算的结果之间的差别。结果表明,在温度不超过673 K、压力不超过6.0 GPa的范围内,Abramson方程的计算结果与实验测量结果在误差范围内一致,而Saul 和IAPWS-95的预言值比实验测量值偏高,并且温度越高偏差越大。在压力为21 GPa、温度为890~1 100 K时,实验测量出的水的声速比状态方程预言的结果偏高。
  • [1] Mishima O, Stanley H E. The Relationship between Liquid, Supercooled and Glassy Water [J]. Nature(London), 1998, 396: 329-335.
    [2] Cavazzoni C, Chiarotti G L, Scandolo S. Superionic and Metallic States of Water and Ammonia at Giant Planet Conditions [J]. Science, 1999, 283: 44-46.
    [3] Belonoshko A, Saxena S K. A Molecular Dynamics Study of the Pressure-Volume Temperature Properties of Super-Critical Fluids: Ⅰ. H2O [J]. Geochim Cosmochim Acta, 1991, 55: 381-387.
    [4] Brodholt J, Wood B. Simulations of the Structure and Thermodynamic Properties of Water at High Pressures and Temperatures [J]. J Geophys Res, 1993, 98: 519-536.
    [5] Saul A, Wagner W. A Fundamental Equation for Water Covering the Range from the Melting Line to 1273 K at Pressures up to 25000 MPa [J]. J Phys Chem Ref Data, 1989, 18: 1537-1564.
    [6] Wagner W, Pruss A. The IAPWS Formulation(1995) for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use [J]. J Phys Chem Ref Data, 2002, 31: 387-535.
    [7] Abramson E H, Brown J M. Equation of State of Water Based on Speeds of Sound Measured in the Diamond-Anvil Cell [J]. Geochim Cosmochim Acta, 2004, 68: 1827-1835.
    [8] Frank M R, Fei Y W, Hu J Z. Constraining the Equation of State of Fluid H2O to 80 GPa Using the Melting Curve, Bulk Modulus, and Thermal Expansivity of Ice Ⅶ [J]. Geochim Cosmochim Acta, 2004, 68: 2781-2790.
    [9] Mishima O, Endo S. Melting Curve of Ice Ⅶ [J]. J Chem Phys, 1978, 68: 4417-4418.
    [10] Pistorius C W F T, Pistorius M C, Blakey J P, et al. Melting Curve of Ice Ⅶ to 200 kbar [J]. J Chem Phys, 1963, 38: 600-602.
    [11] Datchi F, Loubeyre P, LeToullec R. Extended and Accurate Determination of the Melting Curves of Argon, Helium, Ice(H2O), and Hydrogen(H2) [J]. Phys Rev B, 2000, 61: 6535-6546.
    [12] Lin J F, Militzer B, Struzhkin V V, et al. High Pressure-Temperature Raman Measurements of H2O Melting to 22 GPa and 900 K [J]. J Chem Phys, 2004, 121(17): 8423-8427.
    [13] Schwager B, Chudinovskikh L, Gavriliuk A, et al. Melting Curve of H2O to 90 GPa Measured in a Laser-Heated Diamond Cell [J]. J Phys: Condens Matter, 2004, 16: 1177-1179.
    [14] Li F F, Cui Q L, He Z, et al. High Pressure-Temperature Brillouin Study of Liquid Water: Evidence of the Structural Transition from Low-Density Water to High-Density Water [J]. J Chem Phys, 2005, 123: 174511(1)-174511(5).
    [15] Mao H K, Bell P M, Shaner J, et al. Specific Volume Measurements of Cu, Mo, Pd, and Ag and Calibration of the Rbuy R1 Fluorescence Pressure Gauge from 0. 06 to 1 Mbar [J]. J Appl Phys, 1978, 49: 3276-3283.
    [16] Ragan D D, Gustavsen R, Schiferl D. Calibration of the Ruby R1 and R2 Fluorescence Shift as a Function of Temperature from 0 to 600 K [J]. J Appl Phys, 1992, 72: 5539-5544.
    [17] Li F F, Cui Q L, He Z, et al. Brillouin Scattering Spectroscopy for a Laser Heated Diamond Anvil Cell [J]. Appl Phys Lett, 2006, 88: 203507(1)-203507(3).
    [18] Polian A. Brillouin Scattering at High Pressure: An Overview [J]. J Raman Spectrosc, 2003, 34: 633-637.
  • [1] 马春丽武晓鑫黄凤仙李敏王晓霞周强李芳菲崔启良 . 小分子液体的高温布里渊散射研究. 高压物理学报, 2015, 29(1): 35-41. doi: 10.11858/gywlxb.2015.01.006
    [2] 李敏崔启良李芳菲周强武晓鑫邹广田 . 高温高压条件下液态氧的声速及弹性系数研究. 高压物理学报, 2008, 22(3): 286-290 . doi: 10.11858/gywlxb.2008.03.011
    [3] 顾惠成李凤英 . 有磁和无磁状态下YIG和YAG晶体高压下的声速和衰减. 高压物理学报, 1993, 7(2): 138-142 . doi: 10.11858/gywlxb.1993.02.010
    [4] 龚自正华劲松经福谦谢鸿森郭捷 . 高压下声速温度系数的一种新算法. 高压物理学报, 2000, 14(4): 241-246 . doi: 10.11858/gywlxb.2000.04.001
    [5] 曹贵桐於玉华吴杉楠渠永德 . 高压下发射药燃气的状态方程. 高压物理学报, 1988, 2(3): 227-236 . doi: 10.11858/gywlxb.1988.03.005
    [6] 范大伟李博陈伟许金贵匡云倩叶之琳周文戈谢鸿森 . 石榴子石族矿物状态方程研究进展. 高压物理学报, 2018, 32(1): 010101-1-010101-13. doi: 10.11858/gywlxb.20170597
    [7] 马云张毅李加波蔡灵仓李剑峰柳雷敬秋民王志刚王翔翁继东 . DAC加载下材料高压声速的激光超声测量技术. 高压物理学报, 2011, 25(5): 416-420 . doi: 10.11858/gywlxb.2011.05.006
    [8] 金柯吴强李加波周显明叶素华李俊 . 冲击加载下NaCl单晶高压声速与温度的同步测量. 高压物理学报, 2017, 31(6): 707-717. doi: 10.11858/gywlxb.2017.06.005
    [9] 王贵朝 . 高压下材料弹性声速的一种经验表达式. 高压物理学报, 1988, 2(1): 92-95 . doi: 10.11858/gywlxb.1988.01.014
    [10] 李明李立新杨伍明张培峰高春晓贺春元郝爱民李延春李晓东刘景 . 高温高压下硬水铝石状态方程研究. 高压物理学报, 2008, 22(3): 333-336 . doi: 10.11858/gywlxb.2008.03.020
    [11] 蒋玺周文戈刘永刚谢鸿森张欢刘景马麦宁李晓东李延春 . 室温高压下天然锡石状态方程研究. 高压物理学报, 2005, 19(3): 225-229 . doi: 10.11858/gywlxb.2005.03.006
    [12] 柳雷李晓东李延春唐玲云刘景毕延 . NiO的高压结构和等温状态方程研究. 高压物理学报, 2009, 23(3): 209-214 . doi: 10.11858/gywlxb.2009.03.008
    [13] 龚自正ANDERSONW W W毕延经福谦霍卉谭华 . 水绿矾的状态方程和高压熔化. 高压物理学报, 2000, 14(1): 62-69 . doi: 10.11858/gywlxb.2000.01.011
    [14] 严祖同 . 高压下碱卤晶体的状态方程. 高压物理学报, 1995, 9(3): 234-240 . doi: 10.11858/gywlxb.1995.03.013
    [15] 徐济安 . 一个等温状态方程(Ⅴ)不同温度的高压状态方程. 高压物理学报, 1988, 2(3): 211-217 . doi: 10.11858/gywlxb.1988.03.003
    [16] 范大伟魏舒怡刘景谢鸿森 . 天然黄铜矿原位高温高压X射线衍射研究. 高压物理学报, 2013, 27(6): 828-832. doi: 10.11858/gywlxb.2013.06.006
    [17] 杨向东张宏胡栋经福谦 . 高温高压下碳的状态方程及相变理论研究. 高压物理学报, 1997, 11(4): 250-253 . doi: 10.11858/gywlxb.1997.04.003
    [18] 张其黎赵艳红马桂存张弓木 . 铀高压状态方程的第一原理研究. 高压物理学报, 2016, 30(1): 32-36. doi: 10.11858/gywlxb.2016.01.005
    [19] 胡静竹唐汝明 . CdTe的状态方程及其高压相变. 高压物理学报, 1988, 2(1): 51-57 . doi: 10.11858/gywlxb.1988.01.007
    [20] 顾援王勇刚毛楚生倪元龙吴逢春马民勋 . 用激光驱动冲击波测量高压状态方程的初步实验. 高压物理学报, 1988, 2(2): 165-170 . doi: 10.11858/gywlxb.1988.02.011
  • 加载中
计量
  • 文章访问数:  3108
  • 阅读全文浏览量:  26
  • PDF下载量:  914
出版历程
  • 收稿日期:  2007-09-21
  • 录用日期:  2007-12-10
  • 刊出日期:  2008-09-05

高温高压下液态水声速的研究不同状态方程的准确性验证

    通讯作者: 周强; 
  • 1. 吉林大学超硬材料国家重点实验室,吉林长春 130012

摘要: 研究水的热力学状态方程,对于理解地球及行星科学等起着重要作用,但由于高温高压区域的实验数据较少,该区域的状态方程主要依赖于由低压部分外延或分子动力学模拟计算得到。采用布里渊散射技术测量熔解曲线附近液态水的声速,低温区采用电加热系统,高温区采用激光加热布里渊散射系统,分析比较了由实验测量得到的声速值与用经验状态方程计算的结果之间的差别。结果表明,在温度不超过673 K、压力不超过6.0 GPa的范围内,Abramson方程的计算结果与实验测量结果在误差范围内一致,而Saul 和IAPWS-95的预言值比实验测量值偏高,并且温度越高偏差越大。在压力为21 GPa、温度为890~1 100 K时,实验测量出的水的声速比状态方程预言的结果偏高。

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回