铁的冲击相变机制的分子动力学研究

崔新林 祝文军 贺红亮 邓小良 李英骏

崔新林, 祝文军, 贺红亮, 邓小良, 李英骏. 铁的冲击相变机制的分子动力学研究[J]. 高压物理学报, 2007, 21(4): 433-438 . doi: 10.11858/gywlxb.2007.04.017
引用本文: 崔新林, 祝文军, 贺红亮, 邓小良, 李英骏. 铁的冲击相变机制的分子动力学研究[J]. 高压物理学报, 2007, 21(4): 433-438 . doi: 10.11858/gywlxb.2007.04.017
CUI Xin-Lin, ZHU Wen-Jun, HE Hong-Liang, DENG Xiao-Liang, LI Ying-Jun. Phase Transformation Mechanism of Single Crystal Iron from MD Simulation[J]. Chinese Journal of High Pressure Physics, 2007, 21(4): 433-438 . doi: 10.11858/gywlxb.2007.04.017
Citation: CUI Xin-Lin, ZHU Wen-Jun, HE Hong-Liang, DENG Xiao-Liang, LI Ying-Jun. Phase Transformation Mechanism of Single Crystal Iron from MD Simulation[J]. Chinese Journal of High Pressure Physics, 2007, 21(4): 433-438 . doi: 10.11858/gywlxb.2007.04.017

铁的冲击相变机制的分子动力学研究

doi: 10.11858/gywlxb.2007.04.017
详细信息
    通讯作者:

    贺红亮

Phase Transformation Mechanism of Single Crystal Iron from MD Simulation

More Information
    Corresponding author: HE Hong-Liang
  • 摘要: 用分子动力学方法模拟计算了在冲击波加载条件下,单晶铁中的结构相变(由体心立方结构相到六角密排结构相),相互作用势采用铁的嵌入式原子势(EAM),单晶铁样品的尺寸为28.7 nm22.9 nm22.9 nm,总原子数为1.28106个。通过推动一个运动活塞对静止靶的作用来产生冲击压缩,加载方向沿单晶铁的[100]晶向。通过对原子位置的追踪,揭示了铁的冲击相变机制,计算结果表明相变机制包括两步:首先是在{011}面上的原子受到沿〈100〉晶向的压缩,使{011}面转化成正六角形密排面;然后是在{011}面上原子沿〈0-11〉晶向的滑移,完成由bcc结构到hcp结构的相变。同时发现滑移面只出现在与冲击波加载方向平行的(011)和(0-11)面上。

     

  • Erskine D J, Nellis W J. Shock-Induced Martensitic Phase Transformation of Oriented Graphite to Diamond [J]. Nature, 1991, 349: 317-319.
    Dubrovinsky L S, Saxena S K, Lazor P, et al. Experimental and Theoretical Identification of a New High-Pressure Phase of Silica [J]. Nature, 1997, 388: 362-365.
    Brich F. Elasticity and Constitution of the Earth's Interior [J]. J Geophys Res, 1952, 57: 227-236.
    Jephcoat A, Olson P. Is the Inner Core of the Earth Pure Iron [J]. Nature, 1987, 325: 332-335.
    Minshall S. Properties of Elastic and Plastic Waves Determined by Pin Contactors and Crystals [J]. J Appl Phys, 1955, 26: 463-469.
    Bancroft D, Peterson E L, Minshall S. Polymorphism of Iron at High Pressure [J]. J Appl Phys, 1956, 27: 291-298.
    Yaakobi B, Boehly T R, Meyerhofer D D, et al. EXAFS Measurement of Iron bcc-to-hcp Phase Transformation in Nanosecond-Laser Shocks [J]. Phys Rev Lett, 2005, 95: 075501-1-4.
    Boettger J C, Wallace D C. Metastability and Dynamics of the Shock-Induced Phase Transition in Iron [J]. Phys Rev B, 1997, 55: 2840-2849.
    Kadau K, Germann T C, Lomdahl P S, et al. Microscopic View of Structural Phase Transitions Induced by Shock Waves [J]. Science, 2002, 296: 1681-1684.
    Kadau K, Germann T C, Lomdahl P S, et al. Atomistic Simulations of Shock-Induced Transformations and Their Orientation Dependence in bcc Fe Single Crystal [J]. Phys Rev B, 2005, 72: 064120-1-14.
    Kadau K, Germann T C, Lomdahl P S, et al. Shock Waves in Polycrystalline Iron [J]. Phys Rev Lett, 2007, 98: 135701-1-4.
    Bassett W A, Huang E. Mechanism of the Body-Centered Cubic-Hexagonal Close-Packed Phase Transformation in Iron [J]. Science, 1987, 248: 780-783.
    Kalantar D H, Belak J F, Collins G W, et al. Direct Observation of Transition in Shock-Compressed Iron via Nanosecond X-Ray Diffraction [J]. Phys Rev Lett, 2005, 95: 075502-1-4.
    Wang F M, Ingalls R. Iron bcc-hcp Transition: Local Structure from X-Ray-Absorption Fine Structure [J]. Phys Rev B, 1998, 57: 5647-5654.
    Hawreliak J, Colvin J D, Eggert J H, et al. Analysis of the X-Ray Diffraction Single for the Transition in Shock-Compressed Iron: Simulation and Experiment [J]. Phys Rev B, 2006, 74: 184107-1-16.
    Luo J, Zhu W J, Lin L B, et al. Molecular Dynamics Simulation of Void Growth in Single Crystal Copper under Uniaxial Impacting [J]. Acta Physica Sinica, 2005, 54: 2791-2798. (in Chinese)
    罗晋, 祝文军, 林理彬, 等. 单晶铜在动态加载下空洞增长的分子动力学研究 [J]. 物理学报, 2005, 54: 2791-2798.
    Harrison R J, Voter A F, Chen S P. Embedded Atom Potential For bcc Iron [A]//Vitek V, Srolovitz D J. Atomistic Simulation of Materials: Beyond Pair Potentials [C]. New York: Plenum, 1989: 219-222.
    Daw M S, Baskes M I. Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals [J]. Phys Rev Lett, 1983, 50: 1285-1288.
    Baskes M I. Modified Embedded-Atom Potentials for Cubic Materials and Impurities [J]. Phys Rev B, 1992, 46: 2727-2742.
    Honeycutt J D, Andersen H C. Molecular Dynamics Study of Melting and Freezing of Small Lennard-Jones Clusters [J]. J Phys Chem, 1987, 91: 4950-4963.
    Mao H K, Bassett W A, Takahashi T. Effect of Pressure on Crystal Structure and Lattice Parameters of Iron up to 300 kbar [J]. J Appl Phys, 1967, 38: 272-276.
    Burgers W G. On the Process of Transition of the Cubic-Body-Centered Modification into the Hexagonal-Closed-Packed Modification of Zirconium [J]. Phys, 1934, 1: 561-586.
  • 加载中
计量
  • 文章访问数:  14003
  • HTML全文浏览量:  785
  • PDF下载量:  1054
出版历程
  • 收稿日期:  2007-03-21
  • 修回日期:  2007-04-26
  • 发布日期:  2007-12-05

目录

    /

    返回文章
    返回