损伤度函数模型用于3种钢层裂的二维数值模拟

裴晓阳 李平 董玉斌

裴晓阳, 李平, 董玉斌. 损伤度函数模型用于3种钢层裂的二维数值模拟[J]. 高压物理学报, 2007, 21(1): 71-76 . doi: 10.11858/gywlxb.2007.01.012
引用本文: 裴晓阳, 李平, 董玉斌. 损伤度函数模型用于3种钢层裂的二维数值模拟[J]. 高压物理学报, 2007, 21(1): 71-76 . doi: 10.11858/gywlxb.2007.01.012
PEI Xiao-Yang, LI Ping, DONG Yu-Bin. 2D Numerical Simulation of Spallation in Three Steels with the Damage Function Model[J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 71-76 . doi: 10.11858/gywlxb.2007.01.012
Citation: PEI Xiao-Yang, LI Ping, DONG Yu-Bin. 2D Numerical Simulation of Spallation in Three Steels with the Damage Function Model[J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 71-76 . doi: 10.11858/gywlxb.2007.01.012

损伤度函数模型用于3种钢层裂的二维数值模拟

doi: 10.11858/gywlxb.2007.01.012
详细信息
    通讯作者:

    裴晓阳

2D Numerical Simulation of Spallation in Three Steels with the Damage Function Model

More Information
    Corresponding author: PEI Xiao-Yang
  • 摘要: 把损伤度函数模型嵌入到二维有限元程序DEFEL中,并对3种钢(HR-2钢、2169钢及45钢)的平板撞击层裂实验进行了数值模拟,在模拟中计及材料的屈服硬化效应和Bauschinger效应的影响,较好地再现了实测自由面的速度历史,同时给出了样品中的损伤分布及其发展。在数值模拟中发现,断裂面附近所受最大拉应力介于由声学近似解析计算的层裂强度和从三项式固体状态方程出发得出的断裂理论值之间,并对三者之间的差异作了分析,表明数值模拟结果是合理的。

     

  • Dong Y B, Zhang W J, Jing F Q, et al. Numerical Analysis for Dynamic Damage Processes and LY-12 Aluminum Spallations [J]. Chinese Journal of High Pressure Physics, 1988, 2(4): 305-312. (in Chinese)
    董玉斌, 张万甲, 经福谦, 等. 动态断裂过程的数值分析及LY-12铝的层裂 [J]. 高压物理学报, 1988, 2(4): 305-312.
    Cortes R, Elices M. Numerical Modeling of Ductile Spall Fracture[J]. Impact Eng, 1995, 16(2): 237-251.
    Feng J B, Jing F Q, Zhang G R. Dynamic Ductile Fragmentation and the Damage Function Model [J]. J Appl Phys, 1997, 81: 2575-2578.
    Flis W J, Miller S, Clark W J. DEFEL: A Finite-Element Hydrodynamic Computer Code [CP]. Dyna East Corp, 1984.
    Kanel G I, Razorenov S V, et al. Shock Waves Phenomena in Cohesion Medium [M]. Translated by Han J W. Mianyang: Institute of Fluid Physics, CAEP, 1998: 183-185. (in Chinese)
    卡涅尔 H, 拉扎列诺夫C B. 凝聚介质中的冲击波现象 [M]. 韩均万, 译. 绵阳: 中国工程物理研究院流体物理研究所, 1998: 183-185.
    Gathers G. Determination of Spall Strength from Surface Motion Studies [J]. J Appl Phys, 1990, 67(9): 4090-4092.
    Swegle J W, Grady D E. Shock Viscosity and the Prediction of Shock Wave Rise Times [J]. J Appl Phys, 1985, 58(2): 692-701.
    Zhang L, Zhang Z G, Qin X Y, et al. Dynamic Fracture and Mechanical Property of D6A, 921 and 45 Steels under Low Shock Pressure [J]. Chinese Journal of High Pressure Physics, 2003, 17(4): 305-310. (in Chinese)
    张林, 张祖根, 秦晓云, 等. D6A, 921和45钢的动态破坏与低压冲击特性 [J]. 高压物理学报, 2003, 17(4): 305-310.
    Charles E, Morris D. Los Alamos Shock Wave Profile Data [M]. Los Angeles: University of California Press, 1982: 118.
    Dennison B, Eric L. Peterson, and Stanley Minshall, Polymorphism of Iron at High Pressure [J]. J Appl Phys, 1956, 27(3): 291-298.
    Van M T, Kusubov A S, Mitchell A C. Compendium of Shock Wave Data [R]. UCRL-50108, 1967.
    Renkltf M B. Experimental Data of High Energy Density Cohesion Medium in Impact or Expanding Conditions[M]. Translated by Han J W. Mianyang: Institute of Fluid Physics, CAEP, 1997: 85-86. (in Chinese)
    热尔诺科列托夫 M B. 高能量密度下凝聚物质的冲击压缩和绝热膨胀的实验数据[M]. 韩均万, 译. 绵阳: 中国工程物理研究院流体物理研究所, 1997: 85-86.
  • 加载中
计量
  • 文章访问数:  11644
  • HTML全文浏览量:  450
  • PDF下载量:  947
出版历程
  • 收稿日期:  2006-03-09
  • 修回日期:  2006-05-17
  • 发布日期:  2007-03-05

目录

    /

    返回文章
    返回