顽火辉石(Mg0.92,Fe0.08)SiO3的冲击相变和高压状态方程及其地球物理意义

杨金科 龚自正 邓力维 张莉 费英伟

引用本文:
Citation:

顽火辉石(Mg0.92,Fe0.08)SiO3的冲击相变和高压状态方程及其地球物理意义

    通讯作者: 龚自正; 

Equation of State and Phase Transition of (Mg0.92, Fe0.08) SiO3 Enstatite under Shock Compression and Its Geophysical Implications

    Corresponding author: GONG Zi-Zheng
  • 摘要: 用阻抗匹配法和电探针技术在48~140 GPa冲击压力范围内对化学组分为(Mg0.92, Fe0.08)SiO3、初始密度为3.06 g/cm3的天然顽火辉石进行了冲击压缩实验。根据本工作13发实验数据,结合McQueen等人的数据可以看出,(Mg0.92, Fe0.08)SiO3顽火辉石在冲击压缩过程中,大约经历三个明显区域:低压相区,压力范围为0~40 GPa;混合相区,压力范围为40~67 GPa;高压相区,压力范围为68~140 GPa。在低压相区,D-u关系已由McQueen给出;而在高压相区(68~140 GPa),可由本实验数据得到。由叠加原理计算得到的混合物(Mg0.92, Fe0.08)O(Mw)+SiO2(St)的D-u关系及p-关系曲线明显偏离了实验数据的拟合曲线,从而排除了在高达140 GPa冲击压力下,钙钛矿结构的(Mg0.92, Fe0.08)SiO3发生向氧化物化学分解相变的可能性。对高压相区的实验数据进行拟合,可以得到(Mg0.92, Fe0.08)SiO3钙钛矿的Grneisen参数。通过三阶Birch-Murnaghan有限应变状态方程,由冲击波实验数据得到了零压等熵体积模量K0S=259.6(9) GPa及其对压力的一阶偏导数K0S=4.20(5),其0=4.19 g/cm3。(Mg0.92, Fe0.08)SiO3钙钛矿冲击压缩下的密度数据与PREM密度剖面吻合很好,支持钙钛矿为主要成分的下地幔模型。
  • [1] Knittle E, Jeanloz R. Synthesis and Equation of State of (Mg, Fe)SiO3 Perovskite to over 100 Gigapascals [J]. Science, 1987, 235: 668-670.
    [2] Mao H K, Hemley R J, Fei Y, et al. Effect of Pressure, Temperature, and Composition on Lattice Parameters and Density of (Fe, Mg)SiO3-Perovskites to 30 GPa [J]. J Geophys Res, 1991, 96: 8069-8079.
    [3] Wang Y, Weidner D J, Liebermann R C, et al. p-V-T Equation of State of (Mg, Fe)SiO3 Perovskite: Constraints on Composition of the Lower Mantle [J]. Phys Earth Planet Inter, 1994, 83: 13-40.
    [4] Funamori N, Yagi T, Utsumi W, et al. Thermoelastic Properties of MgSiO3 Perovskite Determined by in situ X-Ray Observations up to 30 GPa and 2000 K [J]. J Geophys Res, 1996, 101: 8257-8269.
    [5] Fiquet G, Andrault D, Dewaele A, et al. p-V-T Equation of State of MgSiO3 Perovskite [J]. Phys Earth Planet Inter, 1998, 105: 21-31.
    [6] Fiquet G, Dewaele A, Andrault D, et al. Thermolastic Properties and Crystal Structure of MgSiO3 Perovskite at Lower Mantle Pressure and Temperature Conditions [J]. Geophys Res Lett, 2000, 27(1): 21-24.
    [7] Saxena S K, Dubrovinsky L S, Tutti F, et al. Equation of State of MgSiO3 with the Perovskite Structure Based on Experimental Measurement [J]. Am Mineral, 1999, 84: 226-232.
    [8] Zhang J, Weidner D J. Thermal Equation of State of Aluminium-Enriched Silicate Perovskite [J]. Science, 1999, 284: 782-784.
    [9] Andrault D, Bolfan-Casanova N, Guignot N. Equation of State of Lower Mantle (Al, Fe)-MgSiO3 Perovskite [J]. Earth Planet Sci Lett, 2001, 193: 501-508.
    [10] Meade C, Mao H K, Hu J Z. High-Temperature Phase Transition and Dissociation of (Mg, Fe)SiO3 Perovskite at Lower Mantle Pressure [J]. Science, 1995, 268: 1743-1745.
    [11] Saxena S K, Dubrovinsky L S, Lazor P, et al. Stability of Perovskite MgSiO3 in the Earth's Mantle [J]. Science, 1996, 274: 1357-1359.
    [12] Serghiou G, Zerr A, Boehler R. (Mg, Fe)SiO3-Perovskite Stability under Lower Mantle Conditions [J]. Science, 1998, 280: 2093-2095.
    [13] Shim S H, Duffy T J, Shen G Y. Stability and Structure of MgSiO3 Perovskite to 2300-Kilometer Depth in the Earth's Mantle [J]. Science, 2001, 293: 2437-2440.
    [14] Trunin R F, Gon'shakova V I, Simakov G V, et al. A Study of Rock under the High Pressures and Temperatures Created by Shock Compression [J]. Izv Acad Sci USSR Phys Solid Earth, Engl Trans, 1965, 8: 579-586.
    [15] McQueen R G, Marsh S P, Fritz J N. Hugoniot Equation of State of Twelve Rocks [J]. J Geophys Res, 1967, 72(20), 4999-5036.
    [16] Simakov G V, Trunin R F. On the Existance of the Overdense Perovskite Structures in Magnesium Silicates under Conditions of High Pressure [J]. Izv Acad Sci USSR Phys Solid Earth, Engl Trans, 1973, 9: 603-604.
    [17] Jeanloz R, Ahrens T J. Pyroxenes and Olivines: Structural Implications of Shock Wave Data for High-Pressure Phases [A]//Manghnani M H, Akimoto S. High-Pressure Research: Applications in Geophysics [C]. Washington D C: American Geophysical Union, 1977: 439-461.
    [18] Watt J P, Ahrens T J. Shock Wave Equation of State of Enstatite [J]. J Geophys Res, 1986, 91(B7): 7495-7503.
    [19] Huo H, Gong Z Zh, Jing F Q. High Pressure Phase of Enstatite and Its Geophysical Implication [J]. Chinese Journal of High Pressure Physics, 1999, 12(2): 132-138. (in Chinese)
    [20] 霍卉, 龚自正, 经福谦. 高压下顽火辉石的相态及其在地球物理中的应用 [J]. 高压物理学报, 1999, 12 (2): 132-138.
    [21] Jing F Q. Introduction to Experiment Equation of State (2nd ed) [M]. Beijing: Science Press, 1999: 328-340. (in Chinese)
    [22] 经福谦. 实验物态方程导引 (第2版) [M]. 北京: 科学出版社, 1999: 328-340.
    [23] Mitchell A C, Nellis W J. Shock Compression of Aluminum, Copper, and Tantalum [J]. J Appl Phys, 1981, 52: 3363-3374.
    [24] Miller G H, Stolper E M, Ahrens T J. Equation of State of a Molten Komatiite: 1. Shock Wave Compression to 36 GPa [J]. J Geophys Res, 1991, 96(B7): 11, 831-11, 848.
    [25] Akins J A, Luo S-N, Asimow P D, et al. , Shock-Induced Melting of MgSiO3 Perovskite and Implications for Melts in Earth's Lowermost Mantle [J]. Geophys Res Lett, 2004, 31: L14612.
    [26] Luo S N, Mosenfelder J L, Asimov P D, et al. Direct Shock Wave Loading of Stishovite to 235 GPa: Implications for Perovskite Stability Relative to an Oxide Assemblage at Lower Mantle Conditions [J]. Geophys Res Lett, 2002, 29(14): 1691-1694.
    [27] McQueen R G. Shock Waves in Condensed Media: Their Properties and the Equation of State of Materials Derived from Them [A]//Eliezer S, Ricci R A. High-Pressure Equations of State: Theory and Applications [C]. Amsterdam: Elsevier Science Publishing Company, 1991: 101-216.
    [28] Fei Y. Effects of Temperature and Composition on the Bulk Modulus of (Mg, Fe)O [J]. Am Mineral, 1999, 84: 272-276.
    [29] Gong Z Zh, Xie H S, Jing F Q, et al. High-Pressure Sound Velocity of Perovskite-Enstatite and Possible Composition of Earth's Lower Mantle [J]. Chin Phys Lett, 1999, 16(9): 695-697.
    [30] Badro J, Rueff J P, Vanko G. Electronic Transitions in Perovskite: Possible Noconvecting Layers in the Lower Mantle [J], Science, 2004, 305: 383-386.
    [31] Anderson O L. Thermoelastic Properties of MgSiO3 Perovskite Using Debye Approach [J]. Am Mineral, 1998, 83: 23-35.
    [32] Anderson O L, Masuda K, Isaak D G. Limits on the Value of T and for MgSiO3 Perovskite [J]. Phys Earth Planet Inter, 1996, 98: 31-46.
    [33] Marton F C, Ita J, Cohen R E. Pressure-Volue-Temperature Equation of State of MgSiO3 Perovskite from Molecular Dynamics and Constraints on Lower Mantle Composition [J]. J Geophys Res, 2001, 106(B5): 8615-8627.
    [34] Heinz D L, Jeanloz R. The Equation of State of the Gold Calibration Standard [J]. J Appl Phys, 1984, 55: 885-893.
    [35] Ahrens T J, Jeanloz R. Pyrite: Shock Compression, Isentropic Release, and Composition of the Earth's Core [J]. J Geophys Res, 1987, 92(B10): 10363-10375.
    [36] Jeanloz R. Shock Wave Equation of State and Finite Strain Theory [J]. J Geophys Res, 1989, 94(B5): 5873-5886.
    [37] Tyburczy, J A, Duffy T S, Ahrens T J, et al. Shock Wave Equation of State of Serpentine to 150 GPa: Implications for the Occurrence of Water in the Earth's Lower Mantle [J]. J Geophys Res, 1991, 96(B11): 18011-18027.
    [38] Debye P. Zur Theories Der Spezifischen Warmen [J]. Ann Phys, 1912, 39: 789-839.
    [39] Gruneisen E. The State of a Solid Body [J]. Hanb Phys, 1926, 10: 1-52.
    [40] Anderson O L. Equations of States of Solids for Geophysics and Ceramic Science [M]. New York: Oxford University Press, 1995.
    [41] Stacey F D. A Thermal Model of the Earth [J]. Phys Earth Planet Inter, 1977, 15: 341-348.
    [42] Brown J M, Shankland T J. Thermodynamic Parameters in the Earth as Determined from Seismic Profiles [J]. Geophys J R Astron Soc, 1981, 66: 579-596.
    [43] Jeanloz R, Morris S. Temperature Distribution in the Crust and Mantle [J]. Ann Rev Erath Planet Sci, 1986, 14: 377-415.
  • [1] 龚自正ANDERSONW W W毕延经福谦霍卉谭华 . 水绿矾的状态方程和高压熔化. 高压物理学报, 2000, 14(1): 62-69 . doi: 10.11858/gywlxb.2000.01.011
    [2] 孙悦孟川民吴国栋杨向东 . 液氮与液态一氧化碳混合物的冲击压缩特性研究. 高压物理学报, 2002, 16(3): 217-223 . doi: 10.11858/gywlxb.2002.03.010
    [3] 张莉龚自正刘红邓力维薛学东经福谦 . 下地幔温压下(Mg,Fe)SiO3钙钛矿的相稳定性对冲击回收样品的微观分析. 高压物理学报, 2004, 18(2): 170-176 . doi: 10.11858/gywlxb.2004.02.013
    [4] 范大伟李博陈伟许金贵匡云倩叶之琳周文戈谢鸿森 . 石榴子石族矿物状态方程研究进展. 高压物理学报, 2018, 32(1): 010101-1-010101-13. doi: 10.11858/gywlxb.20170597
    [5] 顾援王勇刚毛楚生倪元龙吴逢春马民勋 . 用激光驱动冲击波测量高压状态方程的初步实验. 高压物理学报, 1988, 2(2): 165-170 . doi: 10.11858/gywlxb.1988.02.011
    [6] 傅世勤金孝刚陈攀森 . 南丹铁陨石冲击绝热线和状态方程的研究. 高压物理学报, 1989, 3(3): 226-233 . doi: 10.11858/gywlxb.1989.03.008
    [7] 李佩芸黄海军李艳丽 . Fe-3.24%Si的状态方程和声速的第一性原理计算:地球内核Si元素的约束. 高压物理学报, 2019, 33(6): 060101-1-060101-9. doi: 10.11858/gywlxb.20190781
    [8] 鲍忠兴Schmidt V H柳翠霞俞汀南 . KH2PO4和(CH3NHCH2COOH)CaCl2在高压下的状态方程与相变. 高压物理学报, 1995, 9(3): 208-212 . doi: 10.11858/gywlxb.1995.03.008
    [9] 杨晶巫翔秦善 . (Fe0.03Ni0.97)8(Si0.79P0.21)3的等温状态方程研究. 高压物理学报, 2011, 25(3): 275-281 . doi: 10.11858/gywlxb.2011.03.013
    [10] 杨向东胡栋经福谦 . 炸药爆轰产物液氮、液氦和水状态方程研究. 高压物理学报, 1999, 13(2): 93-102 . doi: 10.11858/gywlxb.1999.02.003
    [11] 龙新平何碧蒋小华吴雄 . 论VLW状态方程. 高压物理学报, 2003, 17(4): 247-254 . doi: 10.11858/gywlxb.2003.04.002
    [12] 邹勇陈立溁 . 贵金属金的状态方程. 高压物理学报, 2006, 20(3): 308-312 . doi: 10.11858/gywlxb.2006.03.015
    [13] 李明李立新杨伍明张培峰高春晓贺春元郝爱民李延春李晓东刘景 . 高温高压下硬水铝石状态方程研究. 高压物理学报, 2008, 22(3): 333-336 . doi: 10.11858/gywlxb.2008.03.020
    [14] 施研博赵艳红刘海风孟续军王学容 . 多组元混合物状态方程. 高压物理学报, 2016, 30(6): 453-456. doi: 10.11858/gywlxb.2016.06.003
    [15] 赵锋 . 两种状态方程参数的计算. 高压物理学报, 2014, 28(5): 533-538. doi: 10.11858/gywlxb.2014.05.004
    [16] 柳雷李晓东李延春唐玲云刘景毕延 . NiO的高压结构和等温状态方程研究. 高压物理学报, 2009, 23(3): 209-214 . doi: 10.11858/gywlxb.2009.03.008
    [17] 曹贵桐於玉华吴杉楠渠永德 . 高压下发射药燃气的状态方程. 高压物理学报, 1988, 2(3): 227-236 . doi: 10.11858/gywlxb.1988.03.005
    [18] 严祖同 . 高压下碱卤晶体的状态方程. 高压物理学报, 1995, 9(3): 234-240 . doi: 10.11858/gywlxb.1995.03.013
    [19] 蒋玺周文戈刘永刚谢鸿森张欢刘景马麦宁李晓东李延春 . 室温高压下天然锡石状态方程研究. 高压物理学报, 2005, 19(3): 225-229 . doi: 10.11858/gywlxb.2005.03.006
    [20] 陈俊祥耿华运 . 多孔材料温压状态方程计算简要评述. 高压物理学报, 2019, 33(3): 030111-1-030111-9. doi: 10.11858/gywlxb.20190767
  • 加载中
计量
  • 文章访问数:  1923
  • 阅读全文浏览量:  28
  • PDF下载量:  826
出版历程
  • 收稿日期:  2005-10-12
  • 录用日期:  2006-01-12
  • 刊出日期:  2007-03-05

顽火辉石(Mg0.92,Fe0.08)SiO3的冲击相变和高压状态方程及其地球物理意义

    通讯作者: 龚自正; 
  • 1. 西南交通大学高温高压物理研究所,四川成都 610031;
  • 2. 中国空间技术研究院总装与环境工程部,北京 100094;
  • 3. 华盛顿卡内基研究院地球物理实验室,美国华盛顿 20015

摘要: 用阻抗匹配法和电探针技术在48~140 GPa冲击压力范围内对化学组分为(Mg0.92, Fe0.08)SiO3、初始密度为3.06 g/cm3的天然顽火辉石进行了冲击压缩实验。根据本工作13发实验数据,结合McQueen等人的数据可以看出,(Mg0.92, Fe0.08)SiO3顽火辉石在冲击压缩过程中,大约经历三个明显区域:低压相区,压力范围为0~40 GPa;混合相区,压力范围为40~67 GPa;高压相区,压力范围为68~140 GPa。在低压相区,D-u关系已由McQueen给出;而在高压相区(68~140 GPa),可由本实验数据得到。由叠加原理计算得到的混合物(Mg0.92, Fe0.08)O(Mw)+SiO2(St)的D-u关系及p-关系曲线明显偏离了实验数据的拟合曲线,从而排除了在高达140 GPa冲击压力下,钙钛矿结构的(Mg0.92, Fe0.08)SiO3发生向氧化物化学分解相变的可能性。对高压相区的实验数据进行拟合,可以得到(Mg0.92, Fe0.08)SiO3钙钛矿的Grneisen参数。通过三阶Birch-Murnaghan有限应变状态方程,由冲击波实验数据得到了零压等熵体积模量K0S=259.6(9) GPa及其对压力的一阶偏导数K0S=4.20(5),其0=4.19 g/cm3。(Mg0.92, Fe0.08)SiO3钙钛矿冲击压缩下的密度数据与PREM密度剖面吻合很好,支持钙钛矿为主要成分的下地幔模型。

English Abstract

参考文献 (43)

目录

    /

    返回文章
    返回