Fe/FeO/FeS混合物的Hugoniot线研究

黄海军 经福谦 蔡灵仓 毕延 孟川民

引用本文:
Citation:

Fe/FeO/FeS混合物的Hugoniot线研究

    通讯作者: 黄海军; 

Studies of the Hugoniot Curve for Fe/FeO/FeS Mixture

    Corresponding author: HUANG Hai-Jun
  • 摘要: 在50~210 GPa的压力范围内,用二级轻气炮和电探针技术对平均密度0=(6.690.06) g/cm3的三组元Fe/FeO/FeS(质量分数分别为58.96%、35.83%、5.21%)混合物的Hugoniot线进行了实验测量,所得的Hugoniot参数为:C0=(3.970.07) km/s,=1.580.03。该混合物Hugoniot线的实测结果与用体积可加性原理计算得到的相同组分混合物的Hugoniot线的符合性很好;根据实验数据还计算了混合物的0 K等温压缩线,发现它与体积可加性原理对单质Fe、FeO和FeS的0 K等温压缩线的计算结果相一致,证明了实验结果的合理性与体积可加性原理的适用性,也表明了此混合物在冲击压缩过程中没有发生过可察觉的化学反应。研究结果亦为今后对外地核各种浓度比Fe-O-S体系候选组分高温高压物态方程及物性的进一步研究奠定了基础。
  • [1] Dziewonski A M, Anderson D L. Preliminary Reference Earth Model [J]. Phys Earth Planet Interiors, 1981, 25: 297-356.
    [2] Birch F. Elasticity and Constitution of the Earth's Interior [J]. J Geophys Res, 1952, 20: 227-286.
    [3] Poirier J P. Light Elements in the Earth's Outer Core: A Critical Review [J]. Phys Earth Planet Inter, 1994, 85: 319-337.
    [4] Stevenson D J. Models of the Earth's Core [J] Science, 1981, 241: 611-619.
    [5] Knittle E, Jeanloz R, Michell A C, et al. Metallization of Fe0. 94O at Elevated Pressures and Temperatures Observed by Shock-Wave Electrical Resistivity Measurements [J] Solid State Commun, 1986, 59: 513-515.
    [6] Knittle E, Jeanloz R. Simulating the Core-Mantle Boundary: An Experimental Study of High-Pressure Reactions between Silicates and Liquid Iron [J]. Geophys Res Lett, 1989, 16: 609-612.
    [7] Williams Q, Jeanloz R, Bass J, et al. The Melting Curve of Iron up to 250 Gigapascals: A Constraint on the Temperature at the Earth's Center [J]. Science, 1987, 236: 181-183.
    [8] Jeanloz R, Ahrens T J. Equation of State of FeO and CaO [J]. Geophys J R Astr Soc, 1980, 62: 505-528.
    [9] Knittle E, Jeanloz R. Earth's Core-Mantle Boundary: Results of Experiments at High Pressures and Temperatures [J]. Science, 1991, 251: 1438-1443.
    [10] Boehler R. Melting of the Fe-FeO and Fe-FeS Systems at High Pressures: Constraints on Core Temperatures [J]. Earth Planet Sci Lett, 1992, 111: 217-227.
    [11] Boehler R. Temperatures in the Earth's Core from Melting-Point Measurements of Iron at High Static Pressure [J]. Nature, 1993, 363: 534-536.
    [12] Williams Q, Jeanloz R. Melting Relations in the Iron-Sulfur System at Ultra-High Pressure: Implications for the Thermal State of the Earth [J]. J Geophys Res, 1990, 95: 19299-19310.
    [13] Ahrens T J. Equations of State of Iron Sulfide and Constraints on the Sulfur Content of the Earth [J]. J Geophys Res, 1979, 84: 985-998.
    [14] Brown J M, Ahrens T J, Shampine D L. Hugoniot Data for Pyrrhotite and the Earth's Core [J]. J Geophys Res, 1984, 89: 6041-6048.
    [15] Ahrens T J, Jeanloz R. Pyrite: Shock Compression, Isentropic Release, and Composition of the Earth's Core [J]. J Geophys Res, 1987, 92: 10363-10375.
    [16] Ringwood A E. On the Composition of the Core and Implications for the Origin of the Earth Geochim [J]. Cosmochim Acta, 1977, 11: 111-135.
    [17] Urakawa S, Kato M, Kumazawa M. Experimental Study on the Phase Relation in the System Fe-Ni-O-S up to 15 GPa [A]. //Manghnani M H, Syono Y. High Pressure Research in Mineral Physics [C]. Terrapub, Tokyo, 1987: 95-111.
    [18] Brown J M, Fritz J N, Hixson R S. Hugoniot Data for Iron [J]. J Apply Phys, 2000, 88: 5496-5498.
    [19] Yagi T, Fukuoka K, Takei H, et al. Shock Compression of Wustite [J]. Geophys Res Lett, 1988, 15: 816-819.
    [20] Michell A C, Nellis W J. Shock Compression of Aluminum, Copper, and Tantalum [J]. J Appl Phys, 1981, 52: 3363-3374.
    [21] Jing F Q. Introduction to Experimental Equation of State [M]. Beijing: Scientific Press, 1986: 371. (in Chinese)
    [22] 经福谦. 实验物态方程导引 [M]. 北京: 科学出版社, 1986: 371.
    [23] Lin H L, Yu W R. A theoretical Study on Heat Conduction Following Shock Compression [J]. Chinese Journal of High Pressure Physics, 1994, 8(1): 49-56. (in Chinese)
    [24] 林华令, 于万瑞. 冲击压缩后热传导的理论研究 [J]. 高压物理学报, 1994, 8(1): 49-56.
    [25] Lin H L, Yu W R. Simulation of Shock Compression Behavior of Mixture by Using the Finite Element Method [J]. Chinese Journal of High Pressure Physics, 1998, 12(1): 40-46. (in Chinese)
    [26] 林华令, 于万瑞. 有限元模拟混合物的冲击压缩特性 [J]. 高压物理学报, 1998, 12(1): 40-46.
    [27] Lin H L, Huang F L, Yu W R. Numerical Simulation of Shock Temperature of Mixture Studing Shock Loading [J]. Chinese Journal of High Pressure Physics, 2002, 16(1): 46-56. (in Chinese)
    [28] 林华令, 黄风雷, 于万瑞. 混合物冲击温度的数值模拟 [J]. 高压物理学报, 2002, 16(1): 46-56.
    [29] Anderson O L, Dubrovinsky L, Saxena S K, et al. Experimental Vibrational Grneisen Ratio Values for Epsilon-Iron up to 330 GPa at 300 K [J]. Geophys Res Lett, 2001, 28: 399-402.
    [30] Jackson I, Khanna S K, Revcolevschi A, Berthon J. Elasticity, Shear-Mode Softening and High-Pressure Polymorphism of Wstite (Fe1-xO) [J]. J Geophys Res, 1990, 95: 21671-21685.
    [31] Fei Y W, Mao H K. In Situ Determination of the NiAs Phase of FeO at High Pressure and Temperature [J]. Science, 1994, 266: 1678-1680.
    [32] Wu Q, Jing F Q, Li X Z. Behavior of Grneisen Parameter at High Pressure and Temperature Inferred from Shock Compression Data [J]. Chin Phys Lett, 2002, 19: 528-530.
    [33] Mao H K, Zou G, Mell P M, Experiments Bearing on the Earth's Lower Mantle and Core [R]. Washington: Year Book Carnegie Inst, 1981, 80: 267-272.
  • [1] 戴诚达王翔谭华 . Hugoniot实验的粒子速度测量不确定度分析. 高压物理学报, 2005, 19(2): 113-119 . doi: 10.11858/gywlxb.2005.02.003
    [2] 王青松蓝强戴诚达 . 飞片温升对Hugoniot参数测量的影响. 高压物理学报, 2007, 21(4): 439-443 . doi: 10.11858/gywlxb.2007.04.018
    [3] 于超任会兰宁建国 . 钨合金冲击塑性行为的分子动力学模拟. 高压物理学报, 2013, 27(2): 211-215. doi: 10.11858/gywlxb.2013.02.007
    [4] 郝龙王翔王青松康强黄金 . 冲击压缩下PMMA的响应和光学特性. 高压物理学报, 2017, 31(5): 579-584. doi: 10.11858/gywlxb.2017.05.011
    [5] 桂毓林王彦平刘仓理孙承纬张克明 . 无钴合金钢的冲击响应实验研究. 高压物理学报, 2005, 19(2): 127-131 . doi: 10.11858/gywlxb.2005.02.005
    [6] 孙燕云刘福生张明建徐利华 . 高温高密度条件下氮分子三体关联效应与冲击压缩特性. 高压物理学报, 2009, 23(2): 137-142 . doi: 10.11858/gywlxb.2009.02.010
    [7] 施尚春董石黄跃刘福生孙悦 . 液态N2、CO冲击压缩特性研究. 高压物理学报, 1999, 13(4): 295-300 . doi: 10.11858/gywlxb.1999.04.010
    [8] 李巧燕施尚春杨金文孙悦 . 钕铁硼的冲击压缩特性. 高压物理学报, 2007, 21(2): 210-214 . doi: 10.11858/gywlxb.2007.02.016
    [9] 刘福生经福谦 . 沿等压路径求解疏松材料Hugoniot关系的微分方程组及其求解. 高压物理学报, 2004, 18(1): 10-16 . doi: 10.11858/gywlxb.2004.01.003
    [10] 杨向东武保剑胡栋经福谦 . 用指数参考势计算水的冲击压缩Hugoniot曲线和温度. 高压物理学报, 1997, 11(2): 98-102 . doi: 10.11858/gywlxb.1997.02.004
    [11] 张其黎赵艳红马桂存 . 金高压物态方程的第一原理研究. 高压物理学报, 2014, 28(1): 18-22. doi: 10.11858/gywlxb.2014.01.003
    [12] 马桂存张其黎卢果 . 统计自洽场INFERNO模型在金雨贡纽计算中的应用. 高压物理学报, 2017, 31(1): 1-7. doi: 10.11858/gywlxb.2017.01.001
    [13] 李胜旨刘锦超杨向东郭艳锋许海全 . Mn、Fe掺杂ZnS的第一性原理计算. 高压物理学报, 2010, 24(6): 449-454 . doi: 10.11858/gywlxb.2010.06.008
    [14] 曾代朋陈军谭多望 . 超压爆轰产物冲击绝热线的实验研究. 高压物理学报, 2010, 24(1): 76-80 . doi: 10.11858/gywlxb.2010.01.014
    [15] 吴强经福谦李欣竹 . 零温物态方程输入参数B0K、B0K和0K的确定. 高压物理学报, 2005, 19(2): 97-104 . doi: 10.11858/gywlxb.2005.02.001
    [16] 莫建军孙承纬 . 200 GPa压力范围内铝和铜的等熵压缩线计算. 高压物理学报, 2006, 20(4): 386-390 . doi: 10.11858/gywlxb.2006.04.008
    [17] 陈其峰蔡灵仓陈栋泉经福谦 . 液氘Hugoniot曲线的理论计算. 高压物理学报, 2002, 16(1): 61-64 . doi: 10.11858/gywlxb.2002.01.010
    [18] 李佩芸黄海军李艳丽 . Fe-3.24%Si的状态方程和声速的第一性原理计算:地球内核Si元素的约束. 高压物理学报, 2019, 33(6): 060101-1-060101-9. doi: 10.11858/gywlxb.20190781
    [19] 黄海军聂新卫冷春蔚冯磊胡晓军罗国强沈强王传彬 . 偏Hugoniot状态下93钨状态方程. 高压物理学报, 2017, 31(5): 541-547. doi: 10.11858/gywlxb.2017.05.006
    [20] 刘俊明张旭裴红波舒俊翔覃双钟斌张蓉 . JB-9014钝感炸药冲击Hugoniot关系测量. 高压物理学报, 2018, 32(3): 033202-1-033202-7. doi: 10.11858/gywlxb.20170669
  • 加载中
计量
  • 文章访问数:  1851
  • 阅读全文浏览量:  19
  • PDF下载量:  821
出版历程
  • 收稿日期:  2005-04-06
  • 录用日期:  2005-05-10
  • 刊出日期:  2006-06-05

Fe/FeO/FeS混合物的Hugoniot线研究

    通讯作者: 黄海军; 
  • 1. 中国工程物理研究院流体物理研究所冲击波物理与爆轰物理实验室,四川绵阳 621900

摘要: 在50~210 GPa的压力范围内,用二级轻气炮和电探针技术对平均密度0=(6.690.06) g/cm3的三组元Fe/FeO/FeS(质量分数分别为58.96%、35.83%、5.21%)混合物的Hugoniot线进行了实验测量,所得的Hugoniot参数为:C0=(3.970.07) km/s,=1.580.03。该混合物Hugoniot线的实测结果与用体积可加性原理计算得到的相同组分混合物的Hugoniot线的符合性很好;根据实验数据还计算了混合物的0 K等温压缩线,发现它与体积可加性原理对单质Fe、FeO和FeS的0 K等温压缩线的计算结果相一致,证明了实验结果的合理性与体积可加性原理的适用性,也表明了此混合物在冲击压缩过程中没有发生过可察觉的化学反应。研究结果亦为今后对外地核各种浓度比Fe-O-S体系候选组分高温高压物态方程及物性的进一步研究奠定了基础。

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回