高压下正戊烷的稳定性研究

乔二伟 郑海飞

引用本文:
Citation:

高压下正戊烷的稳定性研究

    通讯作者: 郑海飞

Stability of n-Pentane under High Pressure

    Corresponding author: ZHENG Hai-Fei
  • 摘要: 利用Raman散射光谱在碳硅石压腔下研究了常温下的正戊烷从0.07~4.77 GPa的稳定性。结果表明:正戊烷的 CH3、CH2对称和反对称伸缩振动2 877 cm-1、2 964 cm-1和2 856 cm-1、2 935 cm-1以及-(CH2)n -同步扭曲振动1 303 cm-1均随压力增大而基本呈线性向高频方向移动,并在2.47 GPa附近发生过压凝固,这是一种平衡稳定态之外的亚稳态现象。另外推测正戊烷在高压下可能发生固-固相变,最后通过平衡的固液共存相确定了正戊烷的平衡凝固压力为(1.900.05) GPa。
  • [1] Hunt J M. Petroleum Geochemistry and Geology [M]. San Francisco: W H Freeman. 1979. 31-35.
    [2] White C M, Jensen K L, Rohar P C, et al. Separation of Fischer-Tropsch Catalyst/Wax Mixtures Using Dense-Gas and Liquid Extraction [J]. Energy Fuels, 1996, 10(5): 1067.
    [3] Jones D C. Characterisation of Liquid Brillouin Media at 532 nm [J]. Journal of Nonlinear Optical Physics Materials, 1997, 6(1): 69.
    [4] Rhlid R B, Matthey D W, Blank I, et al. Lipase-Assisted Generation of 2-Methyl-3-Furanthiol and 2-Furfurylthiol from Thioacetates [J]. Journal of Agricultural and Food Chemistry, 2002, 50(14): 4087.
    [5] Ganiev I M, Timerghazin Q K, Khalizov A F, et al. Complexes of Chlorine Dioxide with Nitroxyl Radicals [J]. Tetrahedron Letters, 1999, 40(25): 4737.
    [6] Tkachev S N, Timerghazin Q K, Khalizov A F. Brillouin Scattering Study of Pentane at High Pressure [J]. Journal of Chemical Physics, 1996, 104(24): 10059.
    [7] Gelles S H. Solidification of n-Pentane at High Hydrostatic Pressure [J]. J Chem Phys, 1968, 48: 526.
    [8] Zeto R J, Vanfleet H B. Pressure Calibration to 60 kbar Based on the Resistance Change of a Manganin Coil under Hydrostatic Pressure [J]. J Appl Phys, 1969, 40: 2227.
    [9] Bridgman P W. Proceedings of the American Academy of Arts and Sciences [C]. 1949. 77: 117.
    [10] Bridgman P W. The Physics of High Pressure [M]. London: G Bell and Sons, Ltd, 1952. 399.
    [11] Reeves L E, Babb S E. Melting Curves of Pressure-Transmitting Fluids [J]. J Chem Phys, 1964, 40: 3662.
    [12] Oliver W F, Herbst C A, Wolf G H. Viscous Liquids and Glasses under High Pressure [J]. J Non-Crystalline Solids, 1991, 84: 131-133.
    [13] Houck J C. High Pressure Measurements of Density, Velocity of Sound, and Bulk Moduli of Pentane and 2-Methylbutane and Their Mixures [J]. Journal of Research of the National Bureau of Standards(A): Physics and Chemistry, 1974, 78: 617.
    [14] Mao H K, Bell P M. Design and Varieties of the Megabar Cell [R]. Carnegie Institute Washington Yearbook, 1978. 77: 904.
    [15] Schmidt C, Ziemann M. In-Situ Raman Spectroscopy of Quartz: A Pressure Sensor for Hydrothermal Diamond-Anvil Cell Experiments at Elevated Temperatures [J]. American Mineralogist, 2000, 85: 1725.
    [16] Liu L, Mernaph T P. High-Pressure Raman Study of the -Quartz Forms of SiO2 and GeO2 at Room Temperature [J]. High Temperatures-High Pressures, 1992, 24: 13.
    [17] Grasselli J G, Snavely M K, Bulkin B J. Chemical Applications of Raman Spectroscopy [M]. New York: A Wiley-Interscience Publication, 1981. 148.
    [18] Coats J P. Hodges D R. Recent Analytical Developments in the Petroleum Industry [M]. Essex, England: Applied Science Publishers, 1974. 28.
    [19] Lin V D, Colthup N B, Fateley W G, et al. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules [Z]. Boston: Academic Press, 1991. 10-14.
    [20] Colthup N B, Daly L H, Wiberley S E. Introduction to Infrared and Raman Spectroscopy [M]. Boston: Academic Press, 1990. 216-232.
    [21] Lambert J B, Shurvell H F, Lightner D A, et al. Organic Structural Spectroscopy [M]. New Jersey: Prentice Hall, 1998. 196.
    [22] Lambert J B, Shurvell H F, Lightner D A, et al. Introduction to Organic Spectroscopy [M]. New York: Macmillan, 1987. 178.
    [23] Bridgman P W. The Viscosity of Liquids under Pressure [A]. Proceedings of the National Academy of Sciences of the United States of America [C]. 1925. 11: 603.
    [24] Bridgman P W. The Physics of High Pressure [M]. London: G Bell and Sons Ltd, 1952. 341.
    [25] Brugmans M J P, Vos W L. Competion between Vitrification and Crystallization of Methanol at High Pressure [J]. J Chem Phys, 1995, 103: 2661-2669.
  • [1] 朱祥王永强王征程学瑞袁朝圣陈镇平苏磊 . 室温离子液体[Emim][PF6]和[Bmim][PF6]压致相变的拉曼散射研究. 高压物理学报, 2013, 27(2): 253-260. doi: 10.11858/gywlxb.2013.02.013
    [2] 武晓鑫李敏李芳菲周强高伟崔启良邹广田 . 正辛烷的高压拉曼光谱研究. 高压物理学报, 2009, 23(4): 305-309 . doi: 10.11858/gywlxb.2009.04.011
    [3] 杨向东张宏胡栋经福谦 . 高温高压下碳的状态方程及相变理论研究. 高压物理学报, 1997, 11(4): 250-253 . doi: 10.11858/gywlxb.1997.04.003
    [4] 张宏广梁吉魏秉庆高志栋张继红刘丽芳赵刚 . 高温高压条件下富勒碳的相变. 高压物理学报, 1995, 9(4): 296-301 . doi: 10.11858/gywlxb.1995.04.009
    [5] 刘振先崔启良赵永年邹广田 . 传压介质对晶格振动和相变压力的影响-Bi2O3的高压拉曼光谱研究. 高压物理学报, 1990, 4(2): 81-86 . doi: 10.11858/gywlxb.1990.02.001
    [6] 高玲玲马艳梅刘丹郝健金云霞王峰王秋实邹广田崔启良 . 环庚烷的高压拉曼光谱研究. 高压物理学报, 2008, 22(2): 192-196 . doi: 10.11858/gywlxb.2008.02.013
    [7] 韩茜吴也黄海军 . BiFeO3高压拉曼光谱研究. 高压物理学报, 2018, 32(5): 051202-1-051202-5. doi: 10.11858/gywlxb.20170698
    [8] 黄艳萍崔田 . 金刚烷的高压拉曼光谱研究. 高压物理学报, 2019, 33(5): 051101-1-051101-6. doi: 10.11858/gywlxb.20190832
    [9] 马艳平李芳菲 . 石膏的高压原位Raman光谱和相变研究. 高压物理学报, 2012, 26(3): 357-360. doi: 10.11858/gywlxb.2012.03.018
    [10] 袁真张少鹏靳常青王晓慧 . PbZr0.52Ti0.48O3陶瓷的高压拉曼光谱研究. 高压物理学报, 2015, 29(2): 95-98. doi: 10.11858/gywlxb.2015.02.002
    [11] 王霖刘冰冰王卉侯元元艾晓雷潘跃武崔启良邹广田刘洪江倪永红 . 纳米硫化锌球壳的高压相变研究. 高压物理学报, 2005, 19(4): 357-360 . doi: 10.11858/gywlxb.2005.04.013
    [12] 唐旭东张增明赵智王中平丁泽军 . 高压诱致的反式联苯乙烯酮结构相变与化学反应. 高压物理学报, 2009, 23(6): 401-406 . doi: 10.11858/gywlxb.2009.06.001
    [13] 王世霞郑海飞 . 常温高压下石膏在水中溶解及相变现象的研究. 高压物理学报, 2008, 22(4): 429-433 . doi: 10.11858/gywlxb.2008.04.016
    [14] 杨晓翠赵玉伟高忠明刘鑫张立新王晓明郝爱民 . 高压下CaF2结构相变和光学性质的第一性原理计算. 高压物理学报, 2010, 24(3): 225-230 . doi: 10.11858/gywlxb.2010.03.011
    [15] 鲍忠兴徐丽雯车广灿柳翠霞陈红吴非赵忠贤 . La1.65Sr0.35CaCu2O4+Cly在高压下的电学性质与相变. 高压物理学报, 1999, 13(1): 30-33 . doi: 10.11858/gywlxb.1999.01.005
    [16] 董丙舜王海阔仝斐斐侯志强李振刘童臧金浩杨西贵 . 微米晶单斜氧化锆高压相变制备亚微米四方多晶氧化锆. 高压物理学报, 2019, 33(2): 020104-1-020104-9. doi: 10.11858/gywlxb.20190709
    [17] 罗湘捷罗伯诚刘强丁立业 . 高压腔内叶蜡石相变对发热石墨管电阻的影响. 高压物理学报, 1997, 11(1): 70-74 . doi: 10.11858/gywlxb.1997.01.013
    [18] 周建十 . 高氧压合成产物La2CuO4+的相变研究. 高压物理学报, 1992, 6(3): 169-174 . doi: 10.11858/gywlxb.1992.03.002
    [19] 武琪彭放李庆华雷力李荣祺 . LiAl5O8高压相变研究. 高压物理学报, 2012, 26(3): 338-342. doi: 10.11858/gywlxb.2012.03.015
    [20] 杨洁李明林鹏于栋力何巨龙 . 六角相B-C-N化合物的高压相变研究. 高压物理学报, 2011, 25(2): 123-127 . doi: 10.11858/gywlxb.2011.02.005
  • 加载中
计量
  • 文章访问数:  1649
  • 阅读全文浏览量:  12
  • PDF下载量:  708
出版历程
  • 收稿日期:  2004-09-22
  • 录用日期:  2005-03-21
  • 刊出日期:  2005-12-05

高压下正戊烷的稳定性研究

    通讯作者: 郑海飞
  • 1. 造山带与地壳演化教育部重点实验室,北京大学地球与空间科学学院,北京 100871

摘要: 利用Raman散射光谱在碳硅石压腔下研究了常温下的正戊烷从0.07~4.77 GPa的稳定性。结果表明:正戊烷的 CH3、CH2对称和反对称伸缩振动2 877 cm-1、2 964 cm-1和2 856 cm-1、2 935 cm-1以及-(CH2)n -同步扭曲振动1 303 cm-1均随压力增大而基本呈线性向高频方向移动,并在2.47 GPa附近发生过压凝固,这是一种平衡稳定态之外的亚稳态现象。另外推测正戊烷在高压下可能发生固-固相变,最后通过平衡的固液共存相确定了正戊烷的平衡凝固压力为(1.900.05) GPa。

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回