等容条件下H2O-CO2-CH4混合流体的高温拉曼光谱就位分析

陈晋阳 郑海飞 曾贻善 孙樯

引用本文:
Citation:

等容条件下H2O-CO2-CH4混合流体的高温拉曼光谱就位分析

    通讯作者: 陈晋阳; 

An in-Situ Raman Spectroscopy Study of Isochoric H2O-CO2-CH4 Fluids under High Temperature

    Corresponding author: CHEN Jin-Yang
  • 摘要: 以合成包裹体作为腔体,用显微激光拉曼探针就位分析了H2O-CO2-CH4混合流体的高温特性。研究结果表明,在高温下,CH4和CO2相互之间对各自拉曼光谱的影响不大,水分子对它们的拉曼峰有比较大的影响。在等容条件下,流体均一前,随着温度的升高,水分子的氢键几乎呈线性减少,均一为气相的流体,水分子伸缩振动拉曼峰的变化与一般气体变化相似;随着温度升高,体系压力的增加,最大峰频率呈很微小的降低趋势。均一为液相的流体中的水分子,在均一温度时,氢键变化发生了转折,均一后流体中水分子的氢键受温度的影响比均一前明显要小,在测量的最高温度520 ℃,水分子存在着一定的氢键作用。一直到拉曼光谱测量的最高温度580 ℃还未均一的流体,液相中水分子存在比较强的氢键作用。
  • [1] Shaw R W, Brill T B, Clifford A A, et al. Supercritical Water Solutions [J]. Chem Eng News, 1991, 69(51): 26-39.
    [2] Chen J Y, Huang W. Nearcritical Water-A New Clean Solvent for Chemical Synthesis [J]. World Sci-Tech R & D, 2001, 23(2): 28-30. (in Chinese)
    [3] 陈晋阳, 黄卫. 近临界水--化学合成的清洁溶剂 [J]. 世界科技研究与发展, 2001, 23(2): 28-30.
    [4] Yamanaka J, Mori S, Kaneko Y. Hydrothermal Synthesis of Vanadium-Based Layered Compound with 1 nm Basal Spacing [J]. Materials Transactions, 2001, 42(9): 1854-1857.
    [5] Ziegler K J, Doty R C, Johnston K P, et al. Synthesis of Organic Monolayer-Stabilized Copper Nanocrystals in Supercritical Water [J]. J Am Chem Soc, 2001, 123(32): 7797-7803.
    [6] Kritzer P, Dinjus E. An Assessment of Supercritical Water Oxidation(SCWO) - Existing Problems, Possible Solutions and New Reactor Concepts [J]. Chem Eng J, 2001, 83(3): 207-214.
    [7] Mitton D B, Eliaz N, Cline J A, et al. An Overview of the Current Understanding of Corrosion in SCWO Systems for the Destruction of Hazardous Waste Products [J]. Materials Technology, 2001, 16(1): 44-53.
    [8] Weng K N, Xiao W S, Zhang H Z, et al. Experiment Study on Reactions of Graphite and Siderite with Supercritical Water [J]. Chinese Journal of High Pressure Physics, 1996, 10(4): 241-244. (in Chinese)
    [9] 翁克难, 肖万生, 张惠之, 等. 石墨、菱铁矿与超临界水反应的实验研究 [J]. 高压物理学报, 1996, 10(4): 241-244.
    [10] Xiao W S, Weng K N, L G C, et al. Experiments on Reaction of Polyethylene and Water under High Pressure and High Temperature [J]. Chinese Journal of High Pressure Physics, 2001, 15(3): 169-177. (in Chinese)
    [11] 肖万生, 翁克难, 律广才, 等. 聚乙烯与水反应的高温高压实验及热力学探讨 [J]. 高压物理学报, 2001, 15(3): 169-177.
    [12] Frantz J D, Jean D, Bjorn M. An Optical Cell for Raman Spectroscopic Studies of Supercritical Fluids and Its Application to the Study of Water to 500 ℃ and 2000 bar [J]. Chem Geol, 1993, 106(1): 9-26.
    [13] Hoffmann M M, Conradi S. Are There Hydrogen Bonds in Supercritical Water [J]. J Am Chem Soc, 1997, 119(16): 3811-3817.
    [14] Hu S M, Zhang R H, Zhang X T. A Study of Near and Supercritical Fluids Using Diamond Anvil Cell and in-Situ FTIR Spectroscopy [J]. Acta Geological Sinica, 2000, 74(2): 412-417.
    [15] Furutaka S, Kondo H, Ikawa S. Infrared Spectroscopic Study of Water-Aromatic Hydrocarbon Mixtures at High Temperatures and Pressures [J]. Bulletin of the Chemical Society of Japan, 2001, 74(10): 1775-1788.
    [16] David M C, Gerald M K. Measurement of the Raman Spectrum of Liquid Water [J]. J Chem Phys, 1998, 108(7): 2669-2675.
    [17] Ikushima Y, Hatakeda K, Saito N. An in-Situ Raman Spectroscopy Studies of Subcritical and Supercritical Water: The Peculiarity of Hydrogen Bonding Near the Critical Point [J]. J Chem Phys, 1998, 108(14): 5855-5860.
    [18] Matubayasi N, Wakai C, Nakahara M. Structural Study of Supercritical Water. 1. Nuclear Magnetic Resonance Spectroscopy [J]. J Chem Phys 1997, 107(21): 9133-9140.
    [19] Matubayasi N, Wakai C, Nakahara M. NMR Study of Water Structure in Super- and Subcritical Conditions [J]. Phys Rev Lett, 1997, 78(13): 2573-2576.
    [20] Ohtaki H, Radnai T, Yamaguchi T. Structure of Water under Subcritical and Supercritical Conditions Studied by Solution X-Ray Diffraction [J]. Chem Soc Rev, 1997, 26(1): 41-51.
    [21] Ricci M A, Nardone M, Fontana A. Light and Neutron Scattering Studies of the OH Stretching Band in Liquid and Supercritical Water [J]. J Chem Phys, 1998, 108(2): 450-454.
    [22] Bellissent-Funel M C. Structure of Supercritical Water [J]. J Molecular Liquids, 2001, 90 (1-3): 313-322.
    [23] de Jong P H K, Neilson G W. Hydrogen Bond Structure in an Aqueous Solution of Sodium Chloride at Sub- and Supercritical Conditions [J]. J Chem Phys, 1997, 107(20): 8577-8585.
    [24] Kalinichev A G, Churakov S V. Thermodynamics and Structure of Molecular Clusters in Supercritical Water [J]. Fluid Phase Equilibria, 2001, 183: 271-278.
  • [1] 田雨刘雪廷何运鸿赵慧芳姜峰谭大勇肖万生 . NaCl-O2体系高温高压化学反应的拉曼光谱证据. 高压物理学报, 2017, 31(6): 692-697. doi: 10.11858/gywlxb.2017.06.003
    [2] 崔启良孟进芳邹广田赵永年李冬妹 . Bi1.8Nd0.2Ti4O11的温致及压致软模相变研究. 高压物理学报, 1993, 7(2): 110-114 . doi: 10.11858/gywlxb.1993.02.005
    [3] 张红肖万生谭大勇罗崇举李延春刘景 . 斜锆石(ZrO2)高温高压相变的Raman光谱研究. 高压物理学报, 2007, 21(3): 264-268 . doi: 10.11858/gywlxb.2007.03.008
    [4] 胡艺贺端威胡启威刘方明刘银娟王永坤张瑜 . 人工翡翠的高温高压合成及表征. 高压物理学报, 2015, 29(4): 241-247. doi: 10.11858/gywlxb.2015.04.001
    [5] 高玲玲马艳梅刘丹郝健金云霞王峰王秋实邹广田崔启良 . 环庚烷的高压拉曼光谱研究. 高压物理学报, 2008, 22(2): 192-196 . doi: 10.11858/gywlxb.2008.02.013
    [6] 韩茜吴也黄海军 . BiFeO3高压拉曼光谱研究. 高压物理学报, 2018, 32(5): 051202-1-051202-5. doi: 10.11858/gywlxb.20170698
    [7] 宋海鹏刘云贵李想靳树宇王欣宇巫翔 . 羟碳铈矿的高压拉曼光谱研究. 高压物理学报, 2019, 33(6): 060105-1-060105-8. doi: 10.11858/gywlxb.20190847
    [8] 李东飞张可为里佐威刘承志郭瑞孙成林李海波 . 高压下Td-WTe2单晶体材料的拉曼光谱研究. 高压物理学报, 2016, 30(5): 369-374. doi: 10.11858/gywlxb.2016.05.004
    [9] 袁真张少鹏靳常青王晓慧 . PbZr0.52Ti0.48O3陶瓷的高压拉曼光谱研究. 高压物理学报, 2015, 29(2): 95-98. doi: 10.11858/gywlxb.2015.02.002
    [10] 何运鸿田雨赵慧芳姜峰谭大勇肖万生 . 高氯酸钠高压相变的拉曼光谱证据. 高压物理学报, 2018, 32(4): 041201-1-041201-9. doi: 10.11858/gywlxb.20180543
    [11] 赵金郑海飞 . 0.1~800 MPa压力下方解石拉曼光谱的实验研究. 高压物理学报, 2003, 17(3): 226-229 . doi: 10.11858/gywlxb.2003.03.012
    [12] 陈源福刘福生张宁超赵北京王军国张明建薛学东 . 瞬态激光拉曼光谱测量系统及其在苯冲击压缩实验中的应用. 高压物理学报, 2013, 27(4): 505-510. doi: 10.11858/gywlxb.2013.04.006
    [13] 瞿清明郑海飞 . 0.1~3 000 MPa下碳化硅顶砧拉曼光谱作为压力计的研究. 高压物理学报, 2007, 21(3): 332-336 . doi: 10.11858/gywlxb.2007.03.020
    [14] 何亚丽王君龙邓力维王志飞刘秀茹 . 快速压缩作用下橄榄石的结构稳定性. 高压物理学报, 2020, 34(1): 011201-1-011201-8. doi: 10.11858/gywlxb.20190787
    [15] 秦振兴张建波 . 四甲基硅烷的高压拉曼散射研究. 高压物理学报, 2016, 30(5): 375-379. doi: 10.11858/gywlxb.2016.05.005
    [16] 乔二伟郑海飞孙樯 . 甲醇作为压标的拉曼研究. 高压物理学报, 2004, 18(4): 368-373 . doi: 10.11858/gywlxb.2004.04.014
    [17] 刘振先崔启良赵永年邹广田 . 传压介质对晶格振动和相变压力的影响-Bi2O3的高压拉曼光谱研究. 高压物理学报, 1990, 4(2): 81-86 . doi: 10.11858/gywlxb.1990.02.001
    [18] 徐洪山陈宇飞王琰弟 . 低频加热合成金刚石的时间温场. 高压物理学报, 1998, 12(2): 125-128 . doi: 10.11858/gywlxb.1998.02.009
    [19] 朱祥王永强王征程学瑞袁朝圣陈镇平苏磊 . 室温离子液体[Emim][PF6]和[Bmim][PF6]压致相变的拉曼散射研究. 高压物理学报, 2013, 27(2): 253-260. doi: 10.11858/gywlxb.2013.02.013
    [20] 许金余刘健范飞林任韦波席阳阳杨坤 . 高温SHPB冲击实验技术及其应用. 高压物理学报, 2013, 27(1): 57-62. doi: 10.11858/gywlxb.2013.01.008
  • 加载中
计量
  • 文章访问数:  1745
  • 阅读全文浏览量:  20
  • PDF下载量:  790
出版历程
  • 收稿日期:  2002-02-25
  • 录用日期:  2002-04-18
  • 刊出日期:  2003-03-05

等容条件下H2O-CO2-CH4混合流体的高温拉曼光谱就位分析

    通讯作者: 陈晋阳; 
  • 1. 北京大学地质学系,北京 100871

摘要: 以合成包裹体作为腔体,用显微激光拉曼探针就位分析了H2O-CO2-CH4混合流体的高温特性。研究结果表明,在高温下,CH4和CO2相互之间对各自拉曼光谱的影响不大,水分子对它们的拉曼峰有比较大的影响。在等容条件下,流体均一前,随着温度的升高,水分子的氢键几乎呈线性减少,均一为气相的流体,水分子伸缩振动拉曼峰的变化与一般气体变化相似;随着温度升高,体系压力的增加,最大峰频率呈很微小的降低趋势。均一为液相的流体中的水分子,在均一温度时,氢键变化发生了转折,均一后流体中水分子的氢键受温度的影响比均一前明显要小,在测量的最高温度520 ℃,水分子存在着一定的氢键作用。一直到拉曼光谱测量的最高温度580 ℃还未均一的流体,液相中水分子存在比较强的氢键作用。

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回