-石英相变的应变参数计算及其地质意义

周文戈 谢鸿森 赵志丹 周辉 郭捷

引用本文:
Citation:

-石英相变的应变参数计算及其地质意义

    通讯作者: 周文戈; 

Calculation of the Strain, Stress and Elastic Energy for - Quartz Transition and Its Geological Significance

    Corresponding author: ZHOU Wen-Ge
  • 摘要: 利用已有的和石英压缩性、热膨胀性、弹性及相变温度压力资料,计算了-石英相转变时,和石英的晶胞参数。依据虎克定律以及高压下石英的弹性参数,估算了-石英相转变时的应变、应力和应变能。结果表明,在0~1.1 GPa条件下,随压力升高,-石英相变的线应变介于-0.006~0.005之间,体应变介于-0.016~0.012之间,应力介于-0.46~0.14 GPa之间;应变能介于965~2 760 kJ/m3之间。压力为0.5 GPa左右时,-石英相变的应变、应力和应变能均达到最小值。在此基础上,讨论了壳内大规模酸性岩浆活动引起的-石英相变对壳内岩石的作用。
  • [1] Heaney P J. Structure and Chemistry of the Low-Pressure Silica Polymorphs [A]. Heaney P J, Prewitt C T, Gibbs G V. Silica Physical Behavior, Geochemistry and Materials Applications. Reviews In Mineralogy [C]. 1994, 29: 1-40.
    [2] Hemley R J, Prewitt C T, Kingma K J. High-Pressure Behavior of Silica [A]. Heaney P J, Prewitt C T, Gibbs G V. Silica Physical Behavior, Geochemistry and Materials Applications. Reviews In Mineralogy [C]. 1994, 29: 41-118.
    [3] Lepage Y, Calvert L D, Gabe E J. Parameter Variation in Low Quartz between 94 and 298 K [J]. J of Phys and Chem Solids, 1980, 41: 721-735.
    [4] Carpenter M A, Salje E K H, Graeme-Barber A, et al. Calibration of Excess Thermodynamic Properties and Elastic Constant Variations Associated with the Phase Transition in Quartz [J]. American Mineralogist, 1998, 83(1): 2-22.
    [5] Mcskimin H J, Andreatch P, Thurston R N. Elastic Moduli of Quartz Hydrostatic Pressure at 25℃ and -195. 8℃ [J]. Journal of Applied Physics, 1965, 36(5): 1624-1632.
    [6] McWhan D B. Linear Compression of -Quartz to 150Kbar [J]. Journal of Applied Physics, 1967, 38: 347-352.
    [7] Vaidya S N, Bailey S, Pasternack T, et al. Compressibility of Fifteen Minerals to 45 Kilobars [J]. J Geophys Res, 1973, 78: 6893-6898.
    [8] Olinger B, Halleck P M. The Compression of Quartz [J]. Journal Geophysical Research, 1976, 81(32): 5711-5714.
    [9] Levien L, Prewitt C T, Weidner D J. Structure and Elastic Properties of Quartz at Pressure [J]. American Mineralogist, 1980, 65: 920-930.
    [10] Jorgensen J D. Compression Mechanisms in -Quartz Structures-SiO2 And GeO2 [J]. J Appl Phy, 1978, 48(11): 5473-5478.
    [11] d'Amour H, Denner W, Schulz. Structure Determination Of -Quartz up to 68108 Pa [J]. Acta Crystallogr, 1979, B35: 550-555.
    [12] Pelous J, Vacher R. Thermal Brillouin Scattering in Crystalline and Fused Quartz from 20 to 1000℃ [J]. Solid State Communications, 1976, 18: 657-661.
    [13] Ackermann R J, Sorrell C A. Thermal Expansion and the High-Low Transformation in Quartz. Ⅰ. High-Temperature X-Ray Studies [J]. J Appl Cryst, 1974, 7: 461-467.
    [14] Ohno I. Temperature Variation of Elastic Properties of Quartz up to the - Transition [J]. Journal of Physics of the Earth, 1995, 43: 157-169.
    [15] Carpenter M A, Salje E K H, Graeme-Barber A. Spontaneous Strain as a Determinant of Thermodynamic Properties for Phase Transitions in Minerals [J]. Eur J Mineral, 1998, 10: 621-691.
    [16] ZHONG Wei-fang, PI Dao-hua. Advanced Elasticity [M]. Wuhan: Huazhong University of Technology Press, 1993: 119-122. (in Chinese)
    [17] 钟伟芳, 皮道华. 高等弹性力学 [M]. 武汉: 华中理工大学出版社, 1993: 119-122.
    [18] PAN Zhao-lu. Crystallography And Mineralogy(Ⅰ) [M]. Beijing: Geological Press, 1984: 71-92. (in Chinese)
    [19] 潘兆橹. 结晶学及矿物学(上册) [M]. 北京: 地质出版社, 1984: 71-92.
    [20] Coe R S, Paterson M S. The - Inversion in Quartz: A Coherent Phase Transition under Nonhydrostatic Stress [J]. J Geophys Res, 1969, 74: 4921-4948.
    [21] Cohen L H. High-Low Quartz Inversion: Determination to 35 Kilobars [J]. J Geophys Res, 1967, 72(16): 4245-4251.
    [22] Koster van Groos A F, Ter Heege J P. The High-Low Quartz Transition up to 10 Kilobars Pressure [J]. Journal of Geology, 1973, 81: 717-724.
    [23] Mirwald P W, Massonne H J. The Low-High Quartz and Quartz-Coesite Transition to 40 kbar between 600℃ and 1600℃ and Some Reconnaissance Data on the Effect of NaAlO2 Component on the Low Quartz-Coesite Transition [J]. J Geophys Res, 1980, 85: 6983-6990.
    [24] Shen A H, Bassett W A. The - Quartz Transition at High Temperatures and Pressures in a Diamond-Anvil Cell by Laser Interferometry [J]. American Mineralogist, 1993, 78: 694-698.
    [25] YAN Zu-tong. An Approximate Relation between Cubical Thermal Expansion Coefficient of Solids and Pressure [J]. Chinese Journal of High Pressure Physics, 2000, 14(4): 251-256. (in Chinese)
    [26] 严祖同. 固体热膨胀系数与压强关系的一个近似公式 [J]. 高压物理学报, 2000, 14(4): 251-256.
    [27] WANG Xin, CUI Qi-liang, PAN Yue-wu, et al. Pressure Effect on Lattice Distortions of La0. 3Bi0. 2Ca0. 5MnO3 [J]. Chinese Journal of High Pressure Physics, 2001, 15(1): 60-63. (in Chinese)
    [28] 王欣, 崔启良, 潘跃武, 等. 压力对La0. 3Bi0. 2Ca0. 5MnO3中晶格畸变的影响 [J]. 高压物理学报, 2001, 15(1): 60-63.
    [29] CHEN Gang, LIAO Li-fan. Physical Foundation of Crystal [M]. Beijing: Scientific Press, 1992: 591-614. (in Chinese)
    [30] 陈纲, 廖理几. 晶体物理学基础 [M]. 北京: 科学出版社, 1992: 591-614.
    [31] Bass J D. Elasticity of Minerals, Glasses, and Melts [A]. Ahrens T J. Mineral Physics and Crystallgraphy. A Handbook of Physical Constants [Z]. Washington D C: American Geophysical Union, 1995: 49.
    [32] GAO Shan, ZHANG Ben-ren. Radioactivity of Rocks in the Qinling Orogenic Belt and Adjacent Areas and the Current Thermal Structure and State of the Lithosphere [J]. Geochimica, 1993, (3): 241-252. (in Chinese)
    [33] 高山, 张本仁. 秦岭造山带及其邻区岩石的放射性与岩石圈的现代热结构与热状态 [J]. 地球化学, 1993, (3): 241-251.
    [34] CHEN Rong. Mechanical Properties of Crustal Rocks-Theoretical Foundation and Experimental Method [M]. Beijing: Seismic Press, 1988: 38-50. (in Chinese)
    [35] 陈顒. 地壳岩石的力学性能--理论基础与实验方法 [M]. 北京: 地震出版社, 1988: 38-50.
  • [1] 李新娥祖静徐鹏 . 新型应变式高膛压测试系统研制. 高压物理学报, 2011, 25(4): 310-316 . doi: 10.11858/gywlxb.2011.04.004
    [2] 唐壁玉靳九成李绍绿周灵平陈宗璋 . CVD金刚石薄膜的应力研究. 高压物理学报, 1997, 11(1): 56-60 . doi: 10.11858/gywlxb.1997.01.010
    [3] 郭子政胡旭波罗志环 . 外应力下交换偏置双层膜角度关系曲线的中心偏移现象. 高压物理学报, 2013, 27(5): 738-744. doi: 10.11858/gywlxb.2013.05.013
    [4] 邱冬华程笃庆关庆丰邹广田 . 强流脉冲电子束作用下纯镍表面的应力特征. 高压物理学报, 2009, 23(5): 321-326 . doi: 10.11858/gywlxb.2009.05.001
    [5] 闫华张奇郭彦懿张彦春罗永锋吴金才 . 发射过程中混合燃料应力状态的数值分析. 高压物理学报, 2007, 21(4): 388-396 . doi: 10.11858/gywlxb.2007.04.010
    [6] 王轩黄生洪张永亮 . 金属内冲击波跨晶界传播的应力分配机制初探. 高压物理学报, 2019, 33(5): 052201-1-052201-12. doi: 10.11858/gywlxb.20180608
    [7] 张聪马红安韩奇钢李战厂贾晓鹏 . 高压下国产六面顶压机铰链梁和工作缸的应力分析. 高压物理学报, 2010, 24(5): 321-325 . doi: 10.11858/gywlxb.2010.05.001
    [8] 王金相周楠王小绪杭逸夫 . 爆炸载荷下纳米晶铜晶粒度分布及影响因素研究. 高压物理学报, 2011, 25(6): 501-507. doi: 10.11858/gywlxb.2011.06.004
    [9] 顾惠成李凤英王积方陈良辰 . 百吉帕超高压下Ag的X光衍射实验和研究. 高压物理学报, 1994, 8(1): 69-72 . doi: 10.11858/gywlxb.1994.01.012
    [10] 翁继东李英雷陈宏叶想平叶素华谭华刘仓理 . 全光纤位移干涉技术在SHPB实验测量中的应用. 高压物理学报, 2018, 32(1): 013201-1-013201-6. doi: 10.11858/gywlxb.20170533
    [11] 于万瑞刘戈三 . 固体中冲击波的分子动力学研究. 高压物理学报, 1988, 2(1): 73-78 . doi: 10.11858/gywlxb.1988.01.010
    [12] 彭建祥李大红 . 温度与应变率对钽流动应力的影响. 高压物理学报, 2001, 15(2): 146-150 . doi: 10.11858/gywlxb.2001.02.012
    [13] 赵帅赵建新韩国柱 . 俄罗斯红松的应变率效应及吸能特性. 高压物理学报, 2017, 31(3): 271-279. doi: 10.11858/gywlxb.2017.03.008
    [14] 陈大年刘国庆俞宇颖王焕然谢书港 . 高压、高应变率与低压、高应变率实验的本构关联性. 高压物理学报, 2005, 19(3): 193-200 . doi: 10.11858/gywlxb.2005.03.001
    [15] 高光发 . 混凝土材料动态拉伸强度的应变率强化规律. 高压物理学报, 2017, 31(5): 593-602. doi: 10.11858/gywlxb.2017.05.013
    [16] 王桂吉赵剑衡唐小松谭福利吴刚刘海涛匡学武 . 平面一维应变电炮加载技术研究. 高压物理学报, 2005, 19(3): 269-274 . doi: 10.11858/gywlxb.2005.03.013
    [17] 高光发 . 混凝土材料动态压缩强度的应变率强化规律. 高压物理学报, 2017, 31(3): 261-270. doi: 10.11858/gywlxb.2017.03.007
    [18] 于万瑞 . 高应变率下材料行为的分子动力学研究. 高压物理学报, 1989, 3(2): 143-147 . doi: 10.11858/gywlxb.1989.02.006
    [19] 陈丁丁卢芳云林玉亮蒋邦海 . 某含铝PBX压缩性能的应变率与温度效应. 高压物理学报, 2013, 27(3): 361-366. doi: 10.11858/gywlxb.2013.03.007
    [20] 彭常贤程桂淦徐建波于宝明 . 电子束辐照圆环靶产生动态应变的实验研究. 高压物理学报, 1993, 7(4): 286-292 . doi: 10.11858/gywlxb.1993.04.008
  • 加载中
计量
  • 文章访问数:  1592
  • 阅读全文浏览量:  15
  • PDF下载量:  509
出版历程
  • 收稿日期:  2002-04-22
  • 录用日期:  2002-06-24
  • 刊出日期:  2002-12-05

-石英相变的应变参数计算及其地质意义

    通讯作者: 周文戈; 
  • 1. 中国科学院地球化学研究所高温高压地球动力学实验室,贵州贵阳 550002;
  • 2. 中国地质大学(北京)地矿系岩石室,北京 100083;
  • 3. 北京大学地质系,北京 100871

摘要: 利用已有的和石英压缩性、热膨胀性、弹性及相变温度压力资料,计算了-石英相转变时,和石英的晶胞参数。依据虎克定律以及高压下石英的弹性参数,估算了-石英相转变时的应变、应力和应变能。结果表明,在0~1.1 GPa条件下,随压力升高,-石英相变的线应变介于-0.006~0.005之间,体应变介于-0.016~0.012之间,应力介于-0.46~0.14 GPa之间;应变能介于965~2 760 kJ/m3之间。压力为0.5 GPa左右时,-石英相变的应变、应力和应变能均达到最小值。在此基础上,讨论了壳内大规模酸性岩浆活动引起的-石英相变对壳内岩石的作用。

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回