[1]

罗志全. 核心坍缩型超新星的相关物理过程及爆发机制的研究 [D]. 成都: 四川大学, 2006.

LUO Z Q. Research on the physical process and explosion mechanism of core-collapse supernova [D]. Chengdu: Sichuan University, 2006.

[2] CHOJNICKI K, CLARKE A B, PHILLIPS J C.  A shock-tube investigation of the dynamics of gas-particle mixtures: implications for explosive volcanic eruptions[J]. Geophysical Research Letters, 2006, 33(15): 292-306.
[3] 张莉聪, 徐景德, 吴兵, 等.  甲烷-煤尘爆炸波与障碍物相互作用的数值研究[J]. 中国安全科学学报, 2004, (8): 85-88.
ZHANG L C, XU J D, WU B, et al.  Study on numerical value of reaction between barrier and explosion wave of methane-coal dust[J]. China Safety Science Journal, 2004, (8): 85-88.
[4] QUINLAN N J, KENDALL M A F, BELLHOUSE B J, et al.  Investigations of gas and particle dynamics in first generation needle-free drug delivery devices[J]. Shock Waves, 2001, 10(6): 395-404.   doi: 10.1007/PL00004052
[5] 张晓立, 解立峰, 洪滔, 等.  激波管驱动石英砂颗粒抛洒的数值模拟[J]. 高压物理学报, 2014, 28(1): 97-102.   doi: 10.11858/gywlxb.2014.01.016
ZHANG X L, XIE L F, HONG T, et al.  Numerical simulation of quartz sand dispersion under shock tube loading[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 97-102.   doi: 10.11858/gywlxb.2014.01.016
[6] ZHANG F, FROST D L, THIBAULT P A, et al.  Explosive dispersal of solid particles[J]. Shock Waves, 2001, 10(6): 431-443.   doi: 10.1007/PL00004050
[7]

RUDINGER G. Fundamentals of gas-particle flow [M]. Elsevier Scientific Publishing Company, 1980.

[8] REGELE J D, RABINOVITCH J, COLONIUS T, et al.  Unsteady effects in dense, high speed, particle laden flows[J]. International Journal of Multiphase Flow, 2014, 61: 1-13.   doi: 10.1016/j.ijmultiphaseflow.2013.12.007
[9] ZAREI Z, FROST D L, TIMOFEEV E V.  Numerical modelling of the entrainment of particles in inviscid supersonic flow[J]. Shock Waves, 2011, 21(4): 341-355.   doi: 10.1007/s00193-011-0311-5
[10] JACOBS G B, DON W S, DITTMANN T.  High-order resolution Eulerian-Lagrangian simulations of particle dispersion in the accelerated flow behind a moving shock[J]. Theoretical and Computational Fluid Dynamics, 2012, 26(1/2/3/4): 37-50.   doi: 10.1007/s00162-010-0214-6
[11] ROGUE X, RODRIGUEZ G, HAAS J F, et al.  Experimental and numerical investigation of the shock-induced fluidization of a particles bed[J]. Shock Waves, 1998, 8(1): 29-45.   doi: 10.1007/s001930050096
[12] WAGNER J L, BERESH S J, KEARNEY S P, et al.  A multiphase shock tube for shock wave interactions with dense particle fields[J]. Experiments in Fluids, 2012, 52(6): 1507-1517.   doi: 10.1007/s00348-012-1272-x
[13] WAGNER J L, KEARNEY S P, BERESH S J, et al.  Flash X-ray measurements on the shock-induced dispersal of a dense particle curtain[J]. Experiments in Fluids, 2015, 56(12): 213-.   doi: 10.1007/s00348-015-2087-3
[14] THEOFANOUS T G, MITKIN V, CHANG C H.  The dynamics of dense particle clouds subjected to shock waves. Part 1. experiments and scaling laws[J]. Journal of Fluid Mechanics, 2016, 792: 658-681.   doi: 10.1017/jfm.2016.97
[15] THEOFANOUS T G, CHANG C H.  The dynamics of dense particle clouds subjected to shock waves. Part 2. modeling/numerical issues and the way forward[J]. International Journal of Multiphase Flow, 2017, 89: 177-206.   doi: 10.1016/j.ijmultiphaseflow.2016.10.004
[16] WANG L P, ROSA B, GAO H, et al.  Turbulent collision of inertial particles: point-particle based, hybrid simulations and beyond[J]. International Journal of Multiphase Flow, 2009, 35(9): 854-867.   doi: 10.1016/j.ijmultiphaseflow.2009.02.012
[17] LING Y, WAGNER J L, BERESH S J, et al.  Interaction of a planar shock wave with a dense particle curtain: modeling and experiments[J]. Physics of Fluids, 2012, 24(11): 113301-.   doi: 10.1063/1.4768815
[18] HU H H.  Direct simulation of flows of solid-liquid mixtures[J]. International Journal of Multiphase Flow, 1996, 22(2): 335-352.   doi: 10.1016/0301-9322(95)00068-2
[19] XIONG Q, LI B, ZHOU G, et al.  Large-scale DNS of gas-solid flows on Mole-8.5[J]. Chemical Engineering Science, 2012, 71: 422-430.   doi: 10.1016/j.ces.2011.10.059
[20] PICANO F, BREUGEM W P, BRANDT L.  Turbulent channel flow of dense suspensions of neutrally buoyant spheres[J]. Journal of Fluid Mechanics, 2015, 764: 463-487.   doi: 10.1017/jfm.2014.704
[21] WANG S, VANELLA M, BALARAS E.  A hydrodynamic stress model for simulating turbulence/particle interactions with immersed boundary methods[J]. Journal of Computational Physics, 2019, 382: 240-263.   doi: 10.1016/j.jcp.2019.01.010
[22] ZHU C, YU Z, SHAO X.  Interface-resolved direct numerical simulations of the interactions between neutrally buoyant spheroidal particles and turbulent channel flows[J]. Physics of Fluids, 2018, 30(11): 115103-.   doi: 10.1063/1.5051592
[23] ZASTAWNY M, MALLOUPPAS G, ZHAO F, et al.  Derivation of drag and lift force and torque coefficients for non-spherical particles in flows[J]. International Journal of Multiphase Flow, 2012, 39: 227-239.   doi: 10.1016/j.ijmultiphaseflow.2011.09.004
[24] 邹立勇, 廖深飞, 刘金宏, 等.  双椭圆界面Richtmyer-Meshkov流动中的相互干扰效应[J]. 高压物理学报, 2015, 29(3): 191-198.   doi: 10.11858/gywlxb.2015.03.005
ZOU L Y, LIAO S F, LIU J H, et al.  Interaction effect of two ellipse Richtmyer-Meshkov flows[J]. Chinese Journal of High Pressure Physics, 2015, 29(3): 191-198.   doi: 10.11858/gywlxb.2015.03.005
[25] JIANG L J, DENG X L, TAO L.  DNS study of initial-stage shock-particle curtain interaction[J]. Communications in Computational Physics, 2018, 23(4): 1202-1222.
[26] STEWART H B, WENDROFF B.  Two-phase flow: models and methods[J]. Journal of Computational Physics, 1984, 56(3): 363-409.   doi: 10.1016/0021-9991(84)90103-7
[27] CHANG C H, LIOU M S.  A robust and accurate approach to computing compressible multiphase flow: stratified flow model and AUSM(+)-up scheme[J]. Journal of Computational Physics, 2008, 227(10): 5360-5360.   doi: 10.1016/j.jcp.2008.01.041
[28]

DENG X, JIANG L, DING Y. Direct numerical simulation of long-term shock-particle curtain interaction [C]//2018 AIAA Aerospace Sciences Meeting. Florida: American Institute of Aeronautics and Astronautics, 2018.

[29]

LIOU M S. Ten years in the making-AUSM-family [C]//15th AIAA Computational Fluid Dynamics Conference, 2001: 2521.

[30] LIOU MS.  A sequel to AUSM, Part II: AUSM+-up for all speeds[J]. Journal of Computational Physics, 2006, 214(1): 137-170.   doi: 10.1016/j.jcp.2005.09.020