[1] PALKE A C, STEBBINS J F, GEIGER C A, et al.  Cation order-disorder in Fe-bearing pyrope and grossular garnets: a 27Al and 29Si MAS NMR and 57Fe Mossbauer spectroscopy study[J]. American Mineralogist, 2015, 100(2/3): 536-547.
[2] 范大伟, 李博, 陈伟, 等.  石榴子石族矿物状态方程研究进展[J]. 高压物理学报, 2018, 32(1): 010101-.   doi: 10.11858/gywlxb.20170597
FAN D W, LI B, CHEN W, et al.  Research progress of the equation of state for garnet minerals[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 010101-.   doi: 10.11858/gywlxb.20170597
[3] FEI Y, BERTKA C M.  Phase transitions in the Earth’s mantle and mantle mineralogy[J]. Mantle Petrology: Field Observations and High Pressure Experimentation, 1999, 6: 189-207.
[4] RINGWOOD A E.  Phase transformations and their bearing on the constitution and dynamics of the mantle[J]. Geochimica et Cosmochimica Acta, 1991, 55(8): 2083-2110.   doi: 10.1016/0016-7037(91)90090-R
[5] IRIFUNE T, RINGWOOD A E.  Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle[J]. Earth and Planetary Science Letters, 1993, 117(1/2): 101-110.
[6] WANG Z, JI S.  Elasticity of six polycrystalline silicate garnets at pressure up to 3.0 GPa[J]. American Mineralogist, 2001, 86(10): 1209-1218.   doi: 10.2138/am-2001-1009
[7] CONRAD P G, ZHA C S, MAO H K, et al.  The high-pressure, single-crystal elasticity of pyrope, grossular, and andradite[J]. American Mineralogist, 1999, 84(3): 374-383.   doi: 10.2138/am-1999-0321
[8] BABUŠKA V, FIALA J, KUMAZAWA M, et al.  Elastic properties of garnet solid-solution series[J]. Physics of the Earth and Planetary Interiors, 1978, 16(2): 157-176.   doi: 10.1016/0031-9201(78)90086-9
[9] ANDERSON O L, NAFE J E.  The bulk modulus-volume relationship for oxide compounds and related geophysical problems[J]. Journal of Geophysical Research, 1965, 70(16): 3951-3963.   doi: 10.1029/JZ070i016p03951
[10] ANDERSON D L, ANDERSON O L.  The bulk modulus-volume relationship for oxides[J]. Journal of Geophysical Research, 1970, 75(26): 3494-3500.
[11] HAZEN R M.  Crystal structures and compressibilities of pyrope and grossular to 60 kbar[J]. American Mineralogist, 1978, 63(3/4): 297-303.
[12] LEGER J M, REDON A M, CHATEAU C.  Compressions of synthetic pyrope, spessartine and uvarovite garnets up to 25 GPa[J]. Physics and Chemistry of Minerals, 1990, 17(2): 161-167.
[13] ZHANG L, AHSBAHS H, KUTOGLU A, et al.  Single-crystal hydrostatic compression of synthetic pyrope, almandine, spessartine, grossular and andradite garnets at high pressures[J]. Physics and Chemistry of Minerals, 1999, 27(1): 52-58.   doi: 10.1007/s002690050240
[14] TAKAHASHI T, LIU L G.  Compression of ferromagnesian garnets and the effect of solid solutions on the bulk modulus[J]. Journal of Geophysical Research, 1970, 75(29): 5757-5766.   doi: 10.1029/JB075i029p05757
[15] HUANG S, CHEN J.  Equation of state of pyrope–almandine solid solution measured using a diamond anvil cell and in situ synchrotron X-ray diffraction[J]. Physics of the Earth and Planetary Interiors, 2014, 228: 88-91.   doi: 10.1016/j.pepi.2014.01.014
[16] MILANI S, NESTOLA F, ALVARO M, et al.  Diamond-garnet geobarometry: the role of garnet compressibility and expansivity[J]. Lithos, 2015, 227: 140-147.   doi: 10.1016/j.lithos.2015.03.017
[17] FAN D, XU J, MA M, et al.  P-V-T equation of state of spessartine-almandine solid solution measured using a diamond anvil cell and in situ synchrotron X-ray diffraction[J]. Physics and Chemistry of Minerals, 2015, 42(1): 63-72.   doi: 10.1007/s00269-014-0700-2
[18] MURAKAMI M, SINOGEIKIN S V, LITASOV K, et al.  Single-crystal elasticity of iron-bearing majorite to 26 GPa: implications for seismic velocity structure of the mantle transition zone[J]. Earth and Planetary Science Letters, 2008, 274(3/4): 339-345.
[19] FAN D W, WEI S Y, LIU J, et al.  High pressure X-ray diffraction study of a grossular-andradite solid solution and the bulk modulus variation along this solid solution[J]. Chinese Physics Letters, 2011, 28(7): 076101-.   doi: 10.1088/0256-307X/28/7/076101
[20] FAN D W, KUANG Y, XU J, et al.  Thermoelastic properties of grossular-andradite solid solution at high pressures and temperatures[J]. Physics and Chemistry of Minerals, 2017, 44(2): 137-147.   doi: 10.1007/s00269-016-0843-4
[21] DU W, CLARK S M, WALKER D.  Thermo-compression of pyrope-grossular garnet solid solutions: non-linear compositional dependence[J]. American Mineralogist, 2014, 100(1): 215-222.
[22] GILLAN M J, ALFÈD, BRODHOLT J, et al.  First-principles modelling of Earth and planetary materials at high pressures and temperatures[J]. Reports on Progress in Physics, 2006, 69(8): 2365-2441.   doi: 10.1088/0034-4885/69/8/R03
[23] PERDEW J P, ZUNGER A.  Self-interaction correction to density-functional approximations for many-body systems[J]. Physical Review B, 1981, 23(10): 5048-5079.   doi: 10.1103/PhysRevB.23.5048
[24] WENTZCOVITCH R M, MARTINS J L, PRICE G D.  Ab initio molecular dynamics with variable cell shape: application to MgSiO3[J]. Physical Review Letters, 1993, 70(25): 3947-3950.   doi: 10.1103/PhysRevLett.70.3947
[25] DA SILVA C, STIXRUDE L, WENTZCOVITCH R M.  Elastic constants and anisotropy of forsterite at high pressure[J]. Geophysical Research Letters, 1997, 24(15): 1963-1966.   doi: 10.1029/97GL01756
[26] KARKI B B, STIXRUDE L, WENTZCOVITCH R M.  High-pressure elastic properties of major materials of Earth’s mantle from first principles[J]. Reviews of Geophysics, 2015, 39(4): 507-534.
[27] LIU L, DU J G, ZHAO J, et al.  Elastic properties of hydrous forsterites under high pressure: first-principle calculations[J]. Physics of the Earth and Planetary Interiors, 2009, 176(1): 89-97.
[28] LIU L, DU J, LIU W, et al.  Elastic behavior of (MgxFe1-x)2SiO4 olivine at high pressure from first-principles simulations[J]. Journal of Physics and Chemistry of Solids, 2010, 71(8): 1094-1097.   doi: 10.1016/j.jpcs.2010.03.013
[29] LIU L, DU J G, LIU H, et al.  Differential stress effect on the structural and elastic properties of forsterite by first-principles simulation[J]. Physics of the Earth and Planetary Interiors, 2014, 233: 95-102.   doi: 10.1016/j.pepi.2014.06.010
[30] LIU L, LV C J, ZHUANG C Q, et al.  Effects of differential stress on the structure and Raman spectra of calcite from first-principles calculations[J]. American Mineralogist, 2016, 101(8): 1892-1897.   doi: 10.2138/am-2016-5558
[31] CEPERLEY D M, ALDER B J.  Ground state of the electron gas by a stochastic method[J]. Physical Review Letters, 1980, 45(7): 566-569.   doi: 10.1103/PhysRevLett.45.566
[32] NIELSEN O H, MARTIN, RICHARD M.  First-principles calculation of stress[J]. Physical Review Letters, 1983, 50(9): 697-700.   doi: 10.1103/PhysRevLett.50.697
[33] VANDERBILT D.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, 1990, 41(11): 7892-7895.   doi: 10.1103/PhysRevB.41.7892
[34] NIELSEN O H, MARTIN R M.  Quantum-mechanical theory of stress and force[J]. Physical Review B, 1985, 32(6): 3780-3791.   doi: 10.1103/PhysRevB.32.3780
[35] 马艳梅, 彭刚, 李敏.  镁铝石榴子石的高压X射线衍射研究[J]. 高压物理学报, 2008, 22(3): 305-308.   doi: 10.3969/j.issn.1000-5773.2008.03.014
MA Y M, PENG G, LI M.  X-ray diffraction investigation of pyrope under pressure[J]. Chinese Journal of High Pressure Physics, 2008, 22(3): 305-308.   doi: 10.3969/j.issn.1000-5773.2008.03.014
[36] WEBB S L.  The elasticity of the upper mantle orthosilicates olivine and garnet to 3 GPa[J]. Physics and Chemistry of Minerals, 1989, 16(7): 684-692.
[37] ZOU Y, GRÉAUX S, IRIFUNE T, et al.  Thermal equation of state of Mg3Al2Si3O12 pyrope garnet up to 19 GPa and 1700 K[J]. Physics and Chemistry of Minerals, 2012, 39(7): 589-598.   doi: 10.1007/s00269-012-0514-z
[38] HAZEN R M, DOWNS R T, CONRAD P G, et al.  Comparative compressibilities of majorite-type garnets[J]. Physics and Chemistry of Minerals, 1994, 21(5): 344-349.
[39] BASS J D.  Elasticity of uvarovite and andradite garnets[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B7): 7505-7516.   doi: 10.1029/JB091iB07p07505
[40] BASS J D.  Elasticity of grossular and spessartite garnets by Brillouin spectroscopy[J]. Journal of Geophysical Research, 1989, 94(B6): 7621-7628.   doi: 10.1029/JB094iB06p07621
[41] O’NEILL B, BASS J, R. SMYTH J, et al.  Elasticity of a grossular-pyrope-almandine garnet[J]. Journal of Geophysical Research Solid Earth, 1989, 94(B12): 17819-17824.   doi: 10.1029/JB094iB12p17819
[42] SATO Y, AKAOGI M, AKIMOTO S I.  Hydrostatic compression of the synthetic garnets pyrope and almandine[J]. Journal of Geophysical Research, 1978, 83(B1): 335-338.   doi: 10.1029/JB083iB01p00335
[43]

徐光宪, 王祥云. 物质结构[M]. 2版. 北京: 高等教育出版社, 1987: 621–622.

XU G X, WANG X Y. Material structure [M]. 2nd ed. Beijing: Higher Education Press, 1987: 621–622.

[44] LI L, WEIDNER D J, BRODHOLT J, et al.  Ab initio molecular dynamic simulation on the elasticity of Mg3Al2Si3O12 pyrope[J]. Journal of Earth Science, 2011, 22(2): 169-175.   doi: 10.1007/s12583-011-0169-6