[1]

JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceeding of the 7th International Symposium on Ballistic. The Hague, Netherlands, 1983: 541–547.

[2] BAO Y B, WIERZBICKI T.  A comparative study on various ductile crack formation criteria[J]. Journal of Engineering Material and Technology, 2004, 126: 314-324.   doi: 10.1115/1.1755244
[3] BAO Y B, WIERZBICKI T.  Application of extended Mohr-Coulomb criterion to ductile fracture[J]. International Journal of Fracture, 2010, 161(1): 1-20.   doi: 10.1007/s10704-009-9422-8
[4] BORVIK T, HOPPERSTAD O S.  A computational model of viscoplasticity and ductile damage for impact and penetration[J]. European Journal of Mechanics Solids, 2001, 20(5): 685-712.   doi: 10.1016/S0997-7538(01)01157-3
[5] GUPTA N K, IQBAL M A.  Experiment and numerical studies on the behavior of thin aluminum plates subjected to impact by blunt and hemispherical-nosed projectile[J]. International Journal of Impact Engineering, 2006, 32(12): 1921-1944.   doi: 10.1016/j.ijimpeng.2005.06.007
[6] 肖新科, 王要沛, 王爽, 等.  应力状态在球形弹丸撞击6061-T6铝薄靶弹道行为数值预报中的作用[J]. 振动与冲击, 2015, 34(22): 87-91.
XIAO X K, WANG Y P, WANG S, et al.  Effect of stress state on the numerical prediction of ballistic resistance of thin 6061-T6 aluminum alloy targets against sphere projectile impacts[J]. Journal of Vibration and Shock, 2015, 34(22): 87-91.
[7] 肖新科, 王要沛, 张伟.  应力状态在2024-T351 Taylor杆断裂行为数值预报中的作用[J]. 北京理工大学学报, 2016, 36(1): 157-161.
XIAO X K, WANG Y P, ZHANG W.  Effect of stress state on the numerical prediction of the fracture behavior of 2064-T351 aluminium alloy Taylor rods[J]. Transactions of Beijing Institute of Technology, 2016, 36(1): 157-161.
[8] BORVIK T, HOPPERSTAD O S.  Numerical simulation of plugging failure in ballistic penentrtion[J]. International Journal of Solids and Structures, 2001, 38(25): 6241-6264.
[9] BAO Y B, WIERZBICKI T.  On fracture locus in the equivalent strain and stress triaxiality space[J]. International Journal of Mechanical Sciences, 2004, 46(12): 81-98.
[10] GILIOLI A, WIERZBICKI T.  Predicting ballistic impact failure of aluminium 6061-T6 with the rate-independent Bao-Wierzbicki fracture model[J]. International Journal of Impact Engineering, 2015, 76(15): 207-220.
[11] TENG X, WIERZBICKI T.  Evaluation of six fracture models in high velocity perforation[J]. Engineering Fracture Mechanics, 2006, 73(12): 1653-1678.
[12]

李营. 液舱防爆炸破片侵彻作用机理研究 [D]. 武汉: 武汉理工大学, 2014.

LI Y. Fragment resistant mechanism research of safety liquid cabin [D]. Wuhan: Wuhan University of Technology, 2014.

[13]

孟利平. 应变率和应力三轴度对船用钢变形和断裂的影响研究 [D]. 无锡: 中国船舶科学研究中心, 2016.

MENG L P. Influence of strain rate and stress triaxiality on the deformation and fracture behavior of ship hull steel [D]. Wuxi: China Ship Scientific Research Center, 2016.

[14] BAO Y B, WIERZBICKI T.  On fracture locus in the equivalent strain and stress triaxiality space[J]. International Journal of Mechanical Sciences, 2004, 46(1): 81-98.   doi: 10.1016/j.ijmecsci.2004.02.006
[15] BAO Y B, WIERZBICKI T.  On the cut-off value of negative triaxiality for fracture[J]. Engineering Fracture Mechanics, 2005, 72(7): 1049-1069.   doi: 10.1016/j.engfracmech.2004.07.011