[1]

GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. Oxford: Pergamon Press, 1997.

[2] ASHBY M F, EVANS A G, FLECK N A, et al.  Metal foams: a design guide[J]. Applied Mechanics Reviews, 2012, 54(6): B105-B106.   doi: 10.1115/1.1421119
[3] ANDREWS E W, GIBSON L J, ASHBY M F.  The creep of cellular solids[J]. Acta Materialia, 1999, 47(10): 2853-2863.   doi: 10.1016/S1359-6454(99)00150-0
[4] HODGE A M, DUNAND D C.  Measurement and modeling of creep in open-cell NiAl foams[J]. Metallurgical and Materials Transactions A, 2003, 34(10): 2353-2363.   doi: 10.1007/s11661-003-0298-3
[5] 卢子兴, 黄纪翔, 袁泽帅.  微结构对泡沫材料蠕变性能的影响[J]. 复合材料学报, 2016, 33(11): 2641-2648.   doi: 10.13801/j.cnki.fhclxb.20160411.007
LU Z X, HUANG J X, YUAN Z S.  Influence of micro-structure on creep properties of foam materials[J]. Acta Materiae Compositae Sinica, 2016, 33(11): 2641-2648.   doi: 10.13801/j.cnki.fhclxb.20160411.007
[6] WARREN W E, KRAYNIK A M.  The nonlinear elastic behavior of open-cell foams[J]. Journal of Applied Mechanics, 1991, 58(2): 376-381.   doi: 10.1115/1.2897196
[7] ANDREWS E W, GIBSON L J.  The role of cellular structure in creep of two-dimensional cellular solids[J]. Materials Science and Engineering A, 2001, 303(1/2): 120-126.   doi: 10.1016/S0921-5093(00)01854-2
[8] OPPENHEIMER S M, DUNAND D C.  Finite element modeling of creep deformation in cellular metals[J]. Acta Materialia, 2007, 55(11): 3825-3834.   doi: 10.1016/j.actamat.2007.02.033
[9] HUANG J S, GIBSON L J.  Creep of open-cell Voronoi foams[J]. Materials Science and Engineering A, 2003, 339(1/2): 220-226.   doi: 10.1016/S0921-5093(02)00152-1
[10] ZHU H X, MILLS N J.  Modelling the creep of open-cell polymer foams[J]. Journal of the Mechanics and Physics of Solids, 1999, 47(7): 1437-1457.   doi: 10.1016/S0022-5096(98)00116-1
[11] SU B Y, ZHOU Z W, WANG Z H, et al.  Effect of defects on creep behavior of cellular materials[J]. Materials Letters, 2014, 136: 37-40.   doi: 10.1016/j.matlet.2014.07.185
[12] ZHOU Z W, WANG Z H, ZHAO L M, et al.  Uniaxial and biaxial failure behaviors of aluminum alloy foams[J]. Composites Part B: Engineering, 2014, 61: 340-349.   doi: 10.1016/j.compositesb.2013.01.004
[13] TAGARIELLI V L, DESHPANDE V S, FLECK N A, et al.  A constitutive model for transversely isotropic foams, and its application to the indentation of balsa wood[J]. International Journal of Mechanical Sciences, 2005, 47(4/5): 666-686.   doi: 10.1016/j.ijmecsci.2004.11.010
[14] SU B Y, ZHOU Z W, SHU X F, et al.  Multiaxial creep of transversely isotropic foams[J]. Materials Science and Engineering A, 2016, 658: 289-295.   doi: 10.1016/j.msea.2016.02.018
[15] KESLER O, CREWS L K, GIBSON L J.  Creep of sandwich beams with metallic foam cores[J]. Materials Science and Engineering A, 2003, 341(1/2): 264-272.   doi: 10.1016/S0921-5093(02)00239-3
[16] CHEN C, FLECK N A, ASHBY M F.  Creep response of sandwich beams with a metallic foam core[J]. Advanced Engineering Materials, 2002, 4(10): 777-780.   doi: 10.1002/1527-2648(20021014)4:10<777::AID-ADEM777>3.0.CO;2-A
[17] FAN Z G, CHEN C, LU T J.  Multiaxial creep of low density open-cell foams[J]. Materials Science and Engineering A, 2012, 540: 83-88.   doi: 10.1016/j.msea.2012.01.086
[18] AYYAGARI R S, VURAL M.  Multiaxial yield surface of transversely isotropic foams: Part Ⅰ–modeling[J]. Journal of the Mechanics and Physics of Solids, 2015, 74: 49-67.   doi: 10.1016/j.jmps.2014.10.005
[19] SULLIVAN R M, GHOSN L J, LERCH B A.  A general tetrakaidecahedron model for open-celled foams[J]. International Journal of Solids and Structures, 2008, 45(6): 1754-1765.   doi: 10.1016/j.ijsolstr.2007.10.028
[20] CHEN C, LU T J, FLECK N A.  Effect of imperfections on the yielding of two-dimensional foams[J]. Journal of the Mechanics and Physics of Solids, 1999, 47(11): 2235-2272.   doi: 10.1016/S0022-5096(99)00030-(inChinese)
[21] CHEN C, LU T J.  A phenomenological framework of constitutive modelling for incompressible and compressible elasto-plastic solids[J]. International Journal of Solids and Structures, 2000, 37(52): 7769-7786.   doi: 10.1016/S0020-7683(00)00003-2
[22] ALKHADER M, VURAL M.  An energy-based anisotropic yield criterion for cellular solids and validation by biaxial FE simulations[J]. Journal of the Mechanics and Physics of Solids, 2009, 57(5): 871-890.   doi: 10.1016/j.jmps.2008.12.005