[1] 缑林虎, 郑锡涛, 程勇.  平面缠绕炭纤维压力容器大变形有限元分析[J]. 固体火箭技术, 2010, 33(2): 205-208.   doi: 10.3969/j.issn.1006-2793.2010.02.019
GOU L H, ZHENG X T, CHENG Y.  Large deformation finite element analysis of planar carbon fiber wound composite pressure vessel[J]. Journal of Solid Rocket Technology, 2010, 33(2): 205-208.   doi: 10.3969/j.issn.1006-2793.2010.02.019
[2] 郑津洋, 开方明, 刘仲强, 等.  轻质高压储氢容器[J]. 化工学报, 2004, 55(Suppl 1): 130-133.
ZHENG J Y, KAI F M, LIU Z Q, et al.  Lightweight high-pressure hydrogen tank[J]. Journal of Industry and Engineering, 2004, 55(Suppl 1): 130-133.
[3] 杨斌, 章继峰, 梁文彦, 等.  玻璃纤维表面纳米SiO改性对GF/PCBT复合材料力学性能的影响[J]. 复合材料学报, 2015, 32(3): 691-698.
YANG B, ZHANG J F, LIANG W Y, et al.  Effects of glass fiber surface modified by nano-SiO2 on mechanical properties of GF/PCBT composites[J]. Acta Metallurgica Sinica, 2015, 32(3): 691-698.
[4] 杨斌, 章继峰, 周利民.  玻璃纤维-碳纤维混杂增强PCBT复合材料层合板的制备及低速冲击性能[J]. 复合材料学报, 2015, 32(2): 435-443.
YANG B, ZHANG J F, ZHOU L M.  Preparation and low-velocity impact properties of glass fiber-carbon fiber hybrid reinforced PCBT composite laminate[J]. Acta Metallurgica Sinica, 2015, 32(2): 435-443.
[5] 路智敏, 李强, 李卓.  基于爆破试验的CFRP固体火箭发动机壳体的可靠性设计[J]. 复合材料学报, 2009, 26(2): 176-180.   doi: 10.3321/j.issn:1000-3851.2009.02.031
LU Z M, LI Q, LI Z.  Reliability design of CFRP solid rocket motor vessel based on the burst experiment[J]. Acta Metallurgica Sinica, 2009, 26(2): 176-180.   doi: 10.3321/j.issn:1000-3851.2009.02.031
[6] OZEVIN D, HARDING J.  Novel leak localization in pressurized pipeline networks using acoustic emission and geometric connectivity[J]. International Journal of Pressure Vessels and Piping, 2012, 92: 63-69.   doi: 10.1016/j.ijpvp.2012.01.001
[7] CHOU H Y, MOURITZ A P, BANNISTER M K, et al.  Acoustic emission analysis of composite pressure vessels under constant and cyclic pressure[J]. Composites Part A: Applied Science and Manufacturing, 2015, 70: 111-120.   doi: 10.1016/j.compositesa.2014.11.027
[8] KHAN A, KO D K, LIM S C, et al.  Structural vibration-based classification and prediction of delamination in smart composite laminates using deep learning neural network[J]. Composites Part B: Engineering, 2019, 161: 586-594.   doi: 10.1016/j.compositesb.2018.12.118
[9] 王晓勇, 熊建平, 高义广.  X射线切线照相检测技术在纤维缠绕压力容器检测中的应用[J]. 航天制造技术, 2011, (6): 65-68.
WANG X Y, XIONG J P, GAO Y G.  Application of X-ray inspection technique in detection of filament-wound pressure vessel[J]. Aerospace Manufacturing Technology, 2011, (6): 65-68.
[10] 杜善义, 冷劲松, 顾震隆.  用应力波技术对配橡胶内衬的复合材料板壳进行无损检测[J]. 复合材料学报, 1993, 10(1): 65-69.
DU S Y, LENG J S, GU Z L.  Non-destructive testing for composite plate and shell with rubber liner using stress wave technique[J]. Acta Metallurgica Sinica, 1993, 10(1): 65-69.
[11] 乔业程, 王福强.  压力容器氢损伤的监测与检测方法[J]. 橡塑技术与装备, 2018, 44(20): 54-56.
QIAO Y C, WANG F Q.  Monitoring and detection of hydrogen damage in pressure vessels[J]. China Rubber/Plastics Technology and Equipment, 2018, 44(20): 54-56.
[12] 赵海涛, 张博明, 武湛君, 等.  纤维缠绕复合材料压力容器健康监测研究进展[J]. 压力容器, 2007, 24(3): 48-61.   doi: 10.3969/j.issn.1001-4837.2007.03.012
ZHAO H T, ZHANG B M, WU Z J, et al.  Development of health monitoring for filament wound composite pressure vessels[J]. Pressure Vessel Technology, 2007, 24(3): 48-61.   doi: 10.3969/j.issn.1001-4837.2007.03.012
[13] BELLAN F, BULLETTI A, CAPINERI L, et al.  A new design and manufacturing process for embedded Lamb waves interdigital transducers based on piezopolymer film[J]. Sensors and Actuators A, 2005, 123: 379-387.
[14] AI D, ZHU H, LUO H.  Sensitivity of embedded active PZT sensor for concrete structural impact damage detection[J]. Construction and Building Materials, 2016, 111: 348-357.   doi: 10.1016/j.conbuildmat.2016.02.094
[15] ANNAMDAS V G M, SOH C K.  Embedded piezoelectric ceramic transducers in sandwiched beams[J]. Smart Materials and Structures, 2006, 15(2): 538-549.   doi: 10.1088/0964-1726/15/2/037
[16] DZIENDZIKOWSKI M, KURNYTA A, DRAGAN K, et al.  In situ barely visible impact damage detection and localization for composite structures using surface mounted and embedded PZT transducers: a comparative study[J]. Mechanical Systems and Signal Processing, 2016, 78: 91-106.   doi: 10.1016/j.ymssp.2015.09.021
[17] GHIMIRE M, WANG C, DIXON K, et al.  In situ monitoring of prestressed concrete using embedded fiber loop ringdown strain sensor[J]. Measurement, 2018, 124: 224-232.   doi: 10.1016/j.measurement.2018.04.017
[18] WANG Y, WANG Y, HAN B, et al.  Strain monitoring of concrete components using embedded carbon nanofibers/epoxy sensors[J]. Construction and Building Materials, 2018, 186: 367-378.   doi: 10.1016/j.conbuildmat.2018.07.147
[19] CHOWDHURY N T, JOOSTEN M W, PEARCE G M K.  An embedded meshing technique (SET) for analysing local strain distributions in textile composites[J]. Composite Structures, 2019, 210: 294-309.   doi: 10.1016/j.compstruct.2018.11.026
[20] KANERVA M, ANTUNES P, SARLIN E, et al.  Direct measurement of residual strains in CFRP-tungsten hybrids using embedded strain gauges[J]. Materials & Design, 2017, 127: 352-363.