[1] FAHRENTHOLD E P.  A continuum damage model for fracture of brittle solids under dynamic loading[J]. Journal of Applied Mechanics, 1991, 58(4): 904-909.   doi: 10.1115/1.2897704
[2] RAJENDRAN A M.  Modeling the impact behavior of AD85 ceramic under multiaxial loading[J]. International Journal of Impact Engineering, 1994, 15(6): 749-768.   doi: 10.1016/0734-743X(94)90033-H
[3] JOHNSON G R, HOLMQUIST T J.  An improved computational constitutive model for brittle materials[J]. High Pressure Science and Technology, 2008, 309(1): 981-984.
[4] SIMHA C H, BLESS S, BEDFORD A, et al.  Computational modeling of the penetration response of a high-purity ceramic[J]. International Journal of Impact Engineering, 2002, 27(1): 65-86.   doi: 10.1016/S0734-743X(01)00036-7
[5] RAVICHANDRAN G, SUBHASH G.  A micromechanical model for high strain rate behavior of ceramics[J]. International Journal of Solids and Structures, 1995, : 2627-2646.
[6] ESPINOSA H D.  On the dynamic shear resistance of ceramic composites and its dependence on applied multiaxial deformation[J]. International Journal of Solids and Structures, 1995, 32(21): 3105-3128.   doi: 10.1016/0020-7683(94)00300-L
[7] ESPINOSA H D, XU Y, BRAR N S.  Micromechanics of failure waves in glass: Ⅱ, modeling[J]. Journal of the American Ceramic Society, 1997, 80(8): 2074-2085.

STEINBERG D J. Computer studies of the dynamic strength of ceramics [M]//Shock Waves. Berlin: Springer, 1992: 415–422.

[9] XU H, WEN H M.  A computational constitutive model for concrete subjected to dynamic loadings[J]. International Journal of Impact Engineering, 2016, 91: 116-125.   doi: 10.1016/j.ijimpeng.2016.01.003
[10] XU H, WEN H M.  Semi-empirical equations for the dynamic strength enhancement of concrete-like materials[J]. International Journal of Impact Engineering, 2013, 60: 76-81.   doi: 10.1016/j.ijimpeng.2013.04.005
[11] ZHAO F Q, WEN H M.  A comment on the maximum dynamic tensile strength of a concrete-like material[J]. International Journal of Impact Engineering, 2018, 115: 32-35.   doi: 10.1016/j.ijimpeng.2018.01.009
[12] ZHAO F Q, WEN H M.  Effect of free water content on the penetration of concrete[J]. International Journal of Impact Engineering, 2018, 121: 180-190.   doi: 10.1016/j.ijimpeng.2018.06.007
[13] BRIDGMAN P W.  Linear compressions to 30 000 kg/cm2, including relatively incompressible substances[J]. Proceedings of the American Academy of Arts and Sciences, 1949, 77(6): 189-234.   doi: 10.2307/20023541
[14] HART H V, DRICKAMER H G.  Effect of high pressure on the lattice parameters of Al2O3[J]. Journal of Chemical Physics, 1965, 43(7): 2265-2266.   doi: 10.1063/1.1697121
[15] SATO Y, AKIMOTO S.  Hydrostatic compression of four corundum-type compounds: α-Al2O3, V2O3, Cr2O3, and α-Fe2O[J]. Journal of Applied Physics, 1979, 50(8): 5285-5291.   doi: 10.1063/1.326625
[16] BASSETT W A, WEATHERS M S, WU T C, et al.  Compressibility of SiC up to 68.4 GPa[J]. Journal of Applied Physics, 1993, 74(6): 3824-3826.   doi: 10.1063/1.354476
[17] ROSENBERG Z, BRAR N S, BLESS S J.  Dynamic high-pressure properties of AlN ceramic as determined by flyer plate impact[J]. Journal of Applied Physics, 1991, 70(1): 167-171.   doi: 10.1063/1.350337
[18] XIA Q, XIA H, RUOFF A L.  Pressure induced rocksalt phase of aluminum nitride: a metastable structure at ambient condition[J]. Journal of Applied Physics, 1993, 73(12): 8198-8200.   doi: 10.1063/1.353435
[19] UENO M, ONODERA A, SHIMOMURA O, et al.  X-ray observation of the structural phase transition of aluminum nitride under high pressure[J]. Physical Review B, 1992, 45(17): 10123-.   doi: 10.1103/PhysRevB.45.10123
[20] ROSENBERG Z, YAZIV D, YESHURUN Y, et al.  Shear strength of shock-loaded alumina as determined with longitudinal and transverse manganin gauges[J]. Journal of Applied Physics, 1987, 62(3): 1120-1122.   doi: 10.1063/1.339721
[21] BOURNE N K, MILLETT J, PICKUP I, et al.  Delayed failure in shocked silicon carbide[J]. Journal of Applied Physics, 1997, 81(9): 6019-6023.   doi: 10.1063/1.364450
[22] FENG R, RAISER G F, GUPTA Y M, et al.  Material strength and inelastic deformation of silicon carbide under shock wave compression[J]. Journal of Applied Physics, 1998, 83(1): 79-86.   doi: 10.1063/1.366704
[23] PICKUP I M, BARKER A K.  Deviatoric strength of silicon carbide subject to shock[J]. AIP Conference Proceedings, 2000, 505(1): 573-576.

LEE M, BRANNON R M, BRONOWSKI D R. Uniaxial and triaxial compression tests of silicon carbide ceramics under quasi-static loading condition [R]. Albuquerque, New Mexico: Sandia National Laboratories, 2005.

[25] CHEN W, RAVICHANDRAN G.  Static and dynamic compressive behavior of aluminum nitride under moderate confinement[J]. Journal of the American Ceramic Society, 1996, 79(3): 579-584.
[26] HEARD H C, CLINE C F.  Mechanical behaviour of polycrystalline BeO, Al2O3 and AlN at high pressure[J]. Journal of Materials Science, 1980, 15(8): 1889-1897.   doi: 10.1007/BF00550614

WILKINS M L, CLINE C F, HONODEL C A. Fourth progress report of light armor program [R]. Livermore: Lawrence Radiation Laboratories, 1969.

[28] HOLMQUIST T J, TEMPLETON D W, BISHNOI K D.  Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications[J]. International Journal of Impact Engineering, 2001, 25(3): 211-231.   doi: 10.1016/S0734-743X(00)00046-4
[29] ZINSZNER J L, ERZAR B, FORQUIN P, et al.  Dynamic fragmentation of an alumina ceramic subjected to shockless spalling: an experimental and numerical study[J]. Journal of the Mechanics and Physics of Solid, 2015, 85: 112-127.   doi: 10.1016/j.jmps.2015.08.014
[30] GALVEZ F, RODRIGUEZ J, SANCHEZ V.  Tensile strength measurements of ceramic materials at high rates of strain[J]. Le Journal de Physique IV, 1997, 7(C3): 151-.
[31] GALVEZ F, RODRIGUEZ J, SANCHEZ V.  The spalling of long bars as a reliable method of measuring the dynamic tensile strength of ceramics[J]. International Journal of Impact Engineering, 2002, 27(2): 161-177.   doi: 10.1016/S0734-743X(01)00039-2
[32] BOURNE N K.  Shock-induced brittle failure of boron carbide[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2002, 458: 1999-2006.   doi: 10.1098/rspa.2002.0968
[33] VOGLER T J, REINHART W D, CHHABILDAS L C.  Dynamic behavior of boron carbide[J]. Journal of Applied Physics, 2004, 95: 4173-4183.   doi: 10.1063/1.1686902
[34] HAYUN S, PARIS V, DARIEL M P, et al.  Static and dynamic mechanical properties of boron carbide processed by spark plasma sintering[J]. Journal of the European Ceramic Society, 2009, 29(16): 3395-3400.   doi: 10.1016/j.jeurceramsoc.2009.07.007
[35] LUNDBERG P, WESTERLING L, LUNDBERG B.  Influence of scale on the penetration of tungsten rods into steel-backed alumina targets[J]. International Journal of Impact Engineering, 1996, 18(4): 403-416.   doi: 10.1016/0734-743X(95)00049-G