[1] |
FAHRENTHOLD E P.
A continuum damage model for fracture of brittle solids under dynamic loading[J]. Journal of Applied MechanicsJournal of Applied Mechanics, 1991, 58(4): 904-909.
doi: 10.1115/1.2897704 |
[2] |
RAJENDRAN A M.
Modeling the impact behavior of AD85 ceramic under multiaxial loading[J]. International Journal of Impact EngineeringInternational Journal of Impact Engineering, 1994, 15(6): 749-768.
doi: 10.1016/0734-743X(94)90033-H |
[3] |
JOHNSON G R, HOLMQUIST T J.
An improved computational constitutive model for brittle materials[J]. High Pressure Science and TechnologyHigh Pressure Science and Technology, 2008, 309(1): 981-984.
|
[4] |
SIMHA C H, BLESS S, BEDFORD A, et al.
Computational modeling of the penetration response of a high-purity ceramic[J]. International Journal of Impact EngineeringInternational Journal of Impact Engineering, 2002, 27(1): 65-86.
doi: 10.1016/S0734-743X(01)00036-7 |
[5] |
RAVICHANDRAN G, SUBHASH G.
A micromechanical model for high strain rate behavior of ceramics[J]. International Journal of Solids and StructuresInternational Journal of Solids and Structures, 1995, : 2627-2646.
|
[6] |
ESPINOSA H D.
On the dynamic shear resistance of ceramic composites and its dependence on applied multiaxial deformation[J]. International Journal of Solids and StructuresInternational Journal of Solids and Structures, 1995, 32(21): 3105-3128.
doi: 10.1016/0020-7683(94)00300-L |
[7] |
ESPINOSA H D, XU Y, BRAR N S.
Micromechanics of failure waves in glass: Ⅱ, modeling[J]. Journal of the American Ceramic SocietyJournal of the American Ceramic Society, 1997, 80(8): 2074-2085.
|
[8] |
STEINBERG D J. Computer studies of the dynamic strength of ceramics [M]//Shock Waves. Berlin: Springer, 1992: 415–422. |
[9] |
XU H, WEN H M.
A computational constitutive model for concrete subjected to dynamic loadings[J]. International Journal of Impact EngineeringInternational Journal of Impact Engineering, 2016, 91: 116-125.
doi: 10.1016/j.ijimpeng.2016.01.003 |
[10] |
XU H, WEN H M.
Semi-empirical equations for the dynamic strength enhancement of concrete-like materials[J]. International Journal of Impact EngineeringInternational Journal of Impact Engineering, 2013, 60: 76-81.
doi: 10.1016/j.ijimpeng.2013.04.005 |
[11] |
ZHAO F Q, WEN H M.
A comment on the maximum dynamic tensile strength of a concrete-like material[J]. International Journal of Impact EngineeringInternational Journal of Impact Engineering, 2018, 115: 32-35.
doi: 10.1016/j.ijimpeng.2018.01.009 |
[12] |
ZHAO F Q, WEN H M.
Effect of free water content on the penetration of concrete[J]. International Journal of Impact EngineeringInternational Journal of Impact Engineering, 2018, 121: 180-190.
doi: 10.1016/j.ijimpeng.2018.06.007 |
[13] |
BRIDGMAN P W.
Linear compressions to 30 000 kg/cm2, including relatively incompressible substances[J]. Proceedings of the American Academy of Arts and SciencesProceedings of the American Academy of Arts and Sciences, 1949, 77(6): 189-234.
doi: 10.2307/20023541 |
[14] |
HART H V, DRICKAMER H G.
Effect of high pressure on the lattice parameters of Al2O3[J]. Journal of Chemical PhysicsJournal of Chemical Physics, 1965, 43(7): 2265-2266.
doi: 10.1063/1.1697121 |
[15] |
SATO Y, AKIMOTO S.
Hydrostatic compression of four corundum-type compounds: α-Al2O3, V2O3, Cr2O3, and α-Fe2O[J]. Journal of Applied PhysicsJournal of Applied Physics, 1979, 50(8): 5285-5291.
doi: 10.1063/1.326625 |
[16] |
BASSETT W A, WEATHERS M S, WU T C, et al.
Compressibility of SiC up to 68.4 GPa[J]. Journal of Applied PhysicsJournal of Applied Physics, 1993, 74(6): 3824-3826.
doi: 10.1063/1.354476 |
[17] |
ROSENBERG Z, BRAR N S, BLESS S J.
Dynamic high-pressure properties of AlN ceramic as determined by flyer plate impact[J]. Journal of Applied PhysicsJournal of Applied Physics, 1991, 70(1): 167-171.
doi: 10.1063/1.350337 |
[18] |
XIA Q, XIA H, RUOFF A L.
Pressure induced rocksalt phase of aluminum nitride: a metastable structure at ambient condition[J]. Journal of Applied PhysicsJournal of Applied Physics, 1993, 73(12): 8198-8200.
doi: 10.1063/1.353435 |
[19] |
UENO M, ONODERA A, SHIMOMURA O, et al.
X-ray observation of the structural phase transition of aluminum nitride under high pressure[J]. Physical Review BPhysical Review B, 1992, 45(17): 10123-.
doi: 10.1103/PhysRevB.45.10123 |
[20] |
ROSENBERG Z, YAZIV D, YESHURUN Y, et al.
Shear strength of shock-loaded alumina as determined with longitudinal and transverse manganin gauges[J]. Journal of Applied PhysicsJournal of Applied Physics, 1987, 62(3): 1120-1122.
doi: 10.1063/1.339721 |
[21] |
BOURNE N K, MILLETT J, PICKUP I, et al.
Delayed failure in shocked silicon carbide[J]. Journal of Applied PhysicsJournal of Applied Physics, 1997, 81(9): 6019-6023.
doi: 10.1063/1.364450 |
[22] |
FENG R, RAISER G F, GUPTA Y M, et al.
Material strength and inelastic deformation of silicon carbide under shock wave compression[J]. Journal of Applied PhysicsJournal of Applied Physics, 1998, 83(1): 79-86.
doi: 10.1063/1.366704 |
[23] |
PICKUP I M, BARKER A K.
Deviatoric strength of silicon carbide subject to shock[J]. AIP Conference ProceedingsAIP Conference Proceedings, 2000, 505(1): 573-576.
|
[24] |
LEE M, BRANNON R M, BRONOWSKI D R. Uniaxial and triaxial compression tests of silicon carbide ceramics under quasi-static loading condition [R]. Albuquerque, New Mexico: Sandia National Laboratories, 2005. |
[25] |
CHEN W, RAVICHANDRAN G.
Static and dynamic compressive behavior of aluminum nitride under moderate confinement[J]. Journal of the American Ceramic SocietyJournal of the American Ceramic Society, 1996, 79(3): 579-584.
|
[26] |
HEARD H C, CLINE C F.
Mechanical behaviour of polycrystalline BeO, Al2O3 and AlN at high pressure[J]. Journal of Materials ScienceJournal of Materials Science, 1980, 15(8): 1889-1897.
doi: 10.1007/BF00550614 |
[27] |
WILKINS M L, CLINE C F, HONODEL C A. Fourth progress report of light armor program [R]. Livermore: Lawrence Radiation Laboratories, 1969. |
[28] |
HOLMQUIST T J, TEMPLETON D W, BISHNOI K D.
Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications[J]. International Journal of Impact EngineeringInternational Journal of Impact Engineering, 2001, 25(3): 211-231.
doi: 10.1016/S0734-743X(00)00046-4 |
[29] |
ZINSZNER J L, ERZAR B, FORQUIN P, et al.
Dynamic fragmentation of an alumina ceramic subjected to shockless spalling: an experimental and numerical study[J]. Journal of the Mechanics and Physics of SolidJournal of the Mechanics and Physics of Solid, 2015, 85: 112-127.
doi: 10.1016/j.jmps.2015.08.014 |
[30] |
GALVEZ F, RODRIGUEZ J, SANCHEZ V.
Tensile strength measurements of ceramic materials at high rates of strain[J]. Le Journal de Physique IVLe Journal de Physique IV, 1997, 7(C3): 151-.
|
[31] |
GALVEZ F, RODRIGUEZ J, SANCHEZ V.
The spalling of long bars as a reliable method of measuring the dynamic tensile strength of ceramics[J]. International Journal of Impact EngineeringInternational Journal of Impact Engineering, 2002, 27(2): 161-177.
doi: 10.1016/S0734-743X(01)00039-2 |
[32] |
BOURNE N K.
Shock-induced brittle failure of boron carbide[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering SciencesProceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2002, 458: 1999-2006.
doi: 10.1098/rspa.2002.0968 |
[33] |
VOGLER T J, REINHART W D, CHHABILDAS L C.
Dynamic behavior of boron carbide[J]. Journal of Applied PhysicsJournal of Applied Physics, 2004, 95: 4173-4183.
doi: 10.1063/1.1686902 |
[34] |
HAYUN S, PARIS V, DARIEL M P, et al.
Static and dynamic mechanical properties of boron carbide processed by spark plasma sintering[J]. Journal of the European Ceramic SocietyJournal of the European Ceramic Society, 2009, 29(16): 3395-3400.
doi: 10.1016/j.jeurceramsoc.2009.07.007 |
[35] |
LUNDBERG P, WESTERLING L, LUNDBERG B.
Influence of scale on the penetration of tungsten rods into steel-backed alumina targets[J]. International Journal of Impact EngineeringInternational Journal of Impact Engineering, 1996, 18(4): 403-416.
doi: 10.1016/0734-743X(95)00049-G |