[1] KELLY A, ZWEBEN C.  Comprehensive composite materials[J]. Materials Today, 1999, 2(1): 20-21.   doi: 10.1016/S1369-7021(99)80033-9
[2]

CLYNE T W, WITHERS P J. An introduction to metal matrix composites [M]. New York, NY, USA: Cambridge University Press, 1993, 1(1): 155–164.

[3] KONDO K I, SOGA S, SAWAOKA A, et al.  Shock compaction of silicon carbide powder[J]. Journal of Materials Science, 1985, 20(3): 1033-1048.   doi: 10.1007/BF00585748
[4] MORRIS D G.  Bonding processes during the dynamic compaction of metallic powders[J]. Materials Science & Engineering, 1983, 57(2): 187-195.
[5] SHAO B, LIU Z, ZHANG X.  Explosive consolidation of amorphous cobalt-based alloys[J]. Journal of Materials Processing Technology, 1999, 85(1/2/3): 121-124.
[6] CARROLL M M, HOLT A C.  Static and dynamic pore-collapse relations for ductile porous materials[J]. Journal of Applied Physics, 1972, 43(4): 1626-1636.   doi: 10.1063/1.1661372
[7] BUTCHER B M, CARROLL M M, HOLT A C.  Shock-wave compaction of porous aluminum[J]. Journal of Applied Physics, 1974, 45(9): 3864-3875.   doi: 10.1063/1.1663877
[8] BOADE R R.  Dynamic compression of porous tungsten[J]. Journal of Applied Physics, 1969, 40(9): 3781-3785.   doi: 10.1063/1.1658272
[9] THADHANI N N, GRAHAM R A, ROYAL T, et al.  Shock-induced chemical reactions in titanium-silicon powder mixtures of different morphologies: time-resolved pressure measurements and materials analysis[J]. Journal of Applied Physics, 1997, 82(3): 1113-1128.   doi: 10.1063/1.365878
[10] BOSLOUGH M B.  A thermochemical model for shock-induced reactions (heat detonations) in solids[J]. Journal of Chemical Physics, 1990, 92(3): 1839-1848.   doi: 10.1063/1.458066
[11] NIEH T G, LUO P, NELLIS W, et al.  Dynamic compaction of aluminum nanocrystals[J]. Acta Materialia, 1996, 44(9): 3781-3788.   doi: 10.1016/1359-6454(96)83816-X
[12] BENSON D J.  An analysis by direct numerical simulation of the effects of particle morphology on the shock compaction of copper powder[J]. Modelling and Simulation in Materials Science and Engineering, 1994, 2: 535-550.   doi: 10.1088/0965-0393/2/3A/008
[13]

HORIE Y, YANO K. Nonequilibrium fluctutations in shock compression of polycrystalline α-Iron [C]//AIP Conference Proceedings, 2002:553–556.

[14] 潘昊, 王升涛, 吴子辉, 等.  孪晶对Be材料冲击加-卸载动力学影响的数值模拟研究[J]. 物理学报, 2018, 67(16): 164601-.   doi: 10.7498/aps.67.20180451
PAN H, WANG S T, WU Z H, et al.  Effect of twining on dynamic behaviors of beryllium materials under impact loading and unloading[J]. Acta Physica Sinica, 2018, 67(16): 164601-.   doi: 10.7498/aps.67.20180451
[15] HAN P, AN X, ZHANG Y, et al.  Particulate scale MPFEM modeling on compaction of Fe and Al composite powders[J]. Powder Technology, 2016, 314: 69-77.
[16] HUANG F, AN X, ZHANG Y, et al.  Multi-particle FEM simulation of 2D compaction on binary Al/SiC composite powders[J]. Powder Technology, 2017, 314: 39-48.   doi: 10.1016/j.powtec.2017.03.017
[17] ZHANG J.  A study of compaction of composite particles by multi-particle finite element method[J]. Composites Science & Technology, 2009, 69(13): 2048-2053.
[18] HERRMANN W.  Constitutive equation for the dynamic compaction of ductile porous materials[J]. Journal of Applied Physics, 1969, 40(6): 2490-2499.   doi: 10.1063/1.1658021
[19] CARROLL M M, KIM K T, NESTERENKO V F.  The effect of temperature on viscoplastic pore collapse[J]. Journal of Applied Physics, 1986, 59(6): 1962-1967.   doi: 10.1063/1.336426
[20] JOHNSON J N.  Dynamic fracture and spallation in ductile solids[J]. Journal of Applied Physics, 1981, 52(4): 2812-2825.   doi: 10.1063/1.329011
[21] MOLINARI A, MERCIER S.  Micromechanical modelling of porous materials under dynamic loading[J]. Journal of the Mechanics & Physics of Solids, 2001, 49(7): 1497-1516.
[22] ZAVALIANGOS A.  A multiparticle simulation of powder compaction using finite element discretization of individual particles[J]. MRS Online Proceedings Library Archive, 2002, : 731-.
[23] ZHANG Y X, AN X Z, ZHANG Y L.  Multi-particle FEM modeling on microscopic behavior of 2D particle compaction[J]. Applied Physics A, 2015, 118(3): 1015-1021.   doi: 10.1007/s00339-014-8861-x
[24] XIN X J, JAYARAMAN P, JIANG G, et al.  Explicit finite element method simulation of consolidation of monolithic and composite powders[J]. Metallurgical & Materials Transactions A, 2002, 33(8): 2649-2658.
[25] JOHNSON G R, COOK W H.  Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1): 31-48.   doi: 10.1016/0013-7944(85)90052-9
[26]

ABAQUS. Abaqus 6.11 analysis user’s manuals [M]. Rising Sun Mills, USA: Dassault Systmes, 2011.

[27] BOADE R R.  Principal Hugoniot, second-shock Hugoniot, and release behavior of pressed copper powder[J]. Journal of Applied Physics, 1970, 41(11): 4542-4551.   doi: 10.1063/1.1658494
[28] BENSON D J.  The calculation of the shock velocity-particle velocity relationship for a copper powder by direct numerical simulation[J]. Wave Motion, 1995, 21(1): 85-99.   doi: 10.1016/0165-2125(94)00044-6
[29] BORG J P, VOGLER T J.  Aspects of simulating the dynamic compaction of a granular ceramic[J]. Modelling & Simulation in Materials Science & Engineering, 2009, 17(4): 045003-.
[30]

WANG L L. Foundations of stress waves [M]. Amsterdam: Elsevier Science Ltd., 2007.