[1]

欧阳德来. TB6和TA15钛合金β锻组织演变及动态再结晶行为研究 [D]. 南京: 南京航空航天大学, 2011: 1-2

[2] 吴琳, 王克鲁, 鲁世强.  基于逐步回归法的TB6钛合金本构关系研究[J]. 热加工工艺, 2010, 39(8): 29-35.   doi: 10.3969/j.issn.1001-3814.2010.08.010
WU L, WANG K L, LU S Q.  Study on constitutive relationship of TB6 alloy based on stepwise regression method[J]. Hot Working Technology, 2010, 39(8): 29-35.   doi: 10.3969/j.issn.1001-3814.2010.08.010
[3] 雷力明, 黄旭, 黄利军.  铸态TB6钛合金热变形行为及本构关系[J]. 中国有色金属学报, 2010, 20(Suppl 1): 377-380.
LEI L M, HUANG X, HUANG L J.  Hot deformation behavior and constitutive relationship of as-cast TB6 alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(Suppl 1): 377-380.
[4] 段园培, 黄仲佳, 余小鲁.  基于摩擦修正的TB6合金流变应力行为研究及本构模型建立[J]. 稀有金属, 2014, 38(2): 202-209.
DUAN Y P, HUANG Z J, YU X L.  Flow stress behavior and constitutive model of as-cast TB6 titanium alloy based on friction correction[J]. Chinese Journal of Rare Metals, 2014, 38(2): 202-209.
[5] WU Y, LIU J, WANG H, et al.  Effect of stress ratio on very high cycle fatigue properties of Ti-10V-2Fe-3Al alloy with duplex microstructure[J]. Journal of Materials Science & Technology, 2018, 34(7): 1189-1195.
[6]

LI J, LI F G, MA X K, et al. Micromechanical study of the forged Ti-1023 titanium alloy by micro-indentation [C]//Key Engineering Materials. Trans Tech Publications, 2018, 765: 160-165.

[7] RITTEL D, LEE S, RAVICHANDRAN G.  A shear-compression specimen for large strain testing[J]. Experimental Mechanics, 2002, 42(1): 58-64.   doi: 10.1007/BF02411052
[8] 周刚毅, 董新龙, 付应乾.  不同加载状态下TA2钛合金绝热剪切破坏响应特性[J]. 力学学报, 2016, 48(6): 1353-1361.
ZHOU G Y, DONG X L, FU Y Q.  An experimental study on adiabatic shear behavior of TA2 titanium alloy subject to different loading condition[J]. Chinese Journal of Theoretical & Applied Mechanics, 2016, 48(6): 1353-1361.
[9] JIN T, ZHOU Z, SHU X, et al.  Effects of strain rate on PMMA failure behavior[J]. Applied Physics A, 2016, 122(1): 7-.   doi: 10.1007/s00339-015-9526-0
[10] 宋立, 胡时胜.  SHPB数据处理中的二波法与三波法[J]. 爆炸与冲击, 2005, 25(4): 368-373.   doi: 10.3321/j.issn:1001-1455.2005.04.014
SONG L, HU S S.  Two-wave and three-wave method in SHPB data processing[J]. Explosion and Shock Waves, 2005, 25(4): 368-373.   doi: 10.3321/j.issn:1001-1455.2005.04.014
[11]

JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceedings of the 7th International Symposium on Ballistic, 1983: 541-547.

[12] 徐天平, 王礼立, 卢维娴.  高应变率下钛合金Ti-6AI-4V的热-粘塑性特性和绝热剪切变形[J]. 爆炸与冲击, 1987, 7(1): 1-8.
XU T P, WANG L L, LU W X.  The thermo-visco plasticity and adiabatic shear deformation for a titanium alloy Ti-6Al-4V under high strain rates[J]. Explosion and Shock Waves, 1987, 7(1): 1-8.
[13] CAZACU O, PLUNKETT B, BARLAT F.  Orthotropic yield criterion for hexagonal closed packed metals[J]. International Journal of Plasticity, 2006, 22(7): 1171-1194.   doi: 10.1016/j.ijplas.2005.06.001
[14] KHAN A S, YU S, LIU H.  Deformation induced anisotropic responses of Ti-6Al-4V alloy Part II: a strain rate and temperature dependent anisotropic yield criterion[J]. International Journal of Plasticity, 2012, 38(4): 14-26.