[1]

张宇文, 袁绪龙, 邓飞. 超空泡航行体流体动力学 [M]. 北京: 国防工业出版社, 2014: 17–32.

ZHANG Y W, YUAN X L, DENG F. Hydrodynamics of supercavitating vehicle [M]. Beijing: National Defense Industry Press, 2014: 17–32.

[2] 姚忠, 王瑞, 徐保成.  超空泡射弹火炮武器应用现状研究[J]. 火炮发射与控制学报, 2017, 38(3): 92-96.
YAO Z, WANG R, XU B C.  Research on application status of supercavitating projectile gun weapon[J]. Journal of Artillery Launch and Control, 2017, 38(3): 92-96.
[3] 施红辉, 周东辉, 孙亚亚, 等.  水下连发射弹的超空泡流动特性研究[J]. 兵工学报, 2018, 39(11): 2228-2234.   doi: 10.3969/j.issn.1000-1093.2018.11.017
SHI H H, ZHOU D H, SUN Y Y, et al.  Study on supercavity flow characteristics of underwater continuous launch projectile[J]. Journal of China Ordnance, 2018, 39(11): 2228-2234.   doi: 10.3969/j.issn.1000-1093.2018.11.017
[4]

YAN P, LI X. Numerical simulation of underwater supercavitating projectile penetrating structure equivalent of torpedo [C]//CHANG G F, CLIVE W, BAO M L. 2018 International Conference on Defence Technology Proceedings. Beijing: The Publishing House of Ordnance Industry, 2018: 629–633.

[5]

邓环宇. 高速射弹侵彻行为及跳弹机理数值计算 [D]. 哈尔滨: 哈尔滨工业大学, 2016: 23–35.

DENG H Y. Numerical calculation of penetration behavior and jump mechanism of high speed projectiles [D]. Harbin: Harbin Industrial University, 2016: 23–35.

[6]

章启成. 水下高速运动体运动特性分析与试验研究 [D]. 南京: 南京理工大学, 2011: 31–40.

ZHANG Q C. Analysis and experimental study on motion characteristics of underwater high-speed moving body [D]. Nanjing: Nanjing University of Science and Technology, 2011: 31–40.

[7]

熊天红. 水下高速射弹超空泡减阻技术研究 [D]. 南京: 南京理工大学, 2005: 95–108.

XIONG T H. Research on super-cavitation drag reduction technology of underwater high speed projectile [D]. Nanjing: Nanjing University of Science and Technology, 2005: 95–108.

[8]

潘森森, 彭晓星. 空化机理 [M]. 北京: 国防工业出版社, 2013: 122–124.

PAN S S, PENG X X. Physical mechanism of cavitation [M]. Beijing: National Defense Industry Press, 2013: 122–124.

[9] 康德, 严平.  基于LS-DYNA的高速破片水中运动特性流固耦合数值模拟[J]. 爆炸与冲击, 2014, 34(5): 534-538.   doi: 10.11883/1001-1455(2014)05-0534-05
KANG D, YAN P.  Fluid-solid coupling numerical simulation of motion characteristics of high-speed fragments in water based on LS-DYNA[J]. Explosion and Shock Waves, 2014, 34(5): 534-538.   doi: 10.11883/1001-1455(2014)05-0534-05
[10]

钱伟长. 穿甲力学 [M]. 北京: 国防工业出版社, 1984: 289–290.

QIAN W C. Armor piercing mechanics [M]. Beijing: National Defense Industry Press, 1984: 289–290.

[11] CHEN X W, LI Q M.  Perforation of a thick plate by rigid projectiles[J]. International Journal of Impact Engineering, 2003, 28(7): 743-759.   doi: 10.1016/S0734-743X(02)00152-5
[12] 黄超, 汪斌, 张远平, 等.  柱形装药自由场水中爆炸气泡的射流特性[J]. 爆炸与冲击, 2011, 31(3): 263-267.   doi: 10.11883/1001-1455(2011)03-0263-05
HUANG C, WANG B, ZHANG Y P, et al.  Jet characteristics of explosive bubbles in free field of cylindrical charge[J]. Explosion and Shock Waves, 2011, 31(3): 263-267.   doi: 10.11883/1001-1455(2011)03-0263-05
[13]

唐一华, 权晓波, 谷立祥, 等. 水下垂直发射航行体空泡流 [M]. 北京: 中国宇航出版社, 2017: 76–111.

TANG Y H, QUAN X B, GU L X, et al. Cavity flow of vertical underwater launched vehicle [M]. Beijing: China Aerospace Publishing House, 2017: 76–111.

[14]

王元博. 纤维增强层合材料的抗弹性能和破坏机理研究 [D]. 合肥: 中国科学技术大学, 2006: 47–51.

WANG Y B. Study on bubble dynamic characteristics and jet impact damage of cylindrical charge [D]. Hefei: China University of Science and Technology, 2006: 47–51.

[15] FORRESTAL M J, LUK V K.  Perforation of aluminum armor plates with conical-nose projectiles[J]. Mechanics of Materials, 1990, 10(1): 97-105.