[1] CAO B, BRINGA E M, MEYERS M A.  Shock compression of monocrystalline copper: atomistic simulations[J]. Metallurgical and Materials Transactions A, 2007, 38(11): 2681-2688.   doi: 10.1007/s11661-007-9248-9
[2] BRINGA E M, CAZAMIAS J U, ERHART P, et al.  Atomistic shock Hugoniot simulation of single-crystal copper[J]. Journal of Applied Physics, 2004, 96(7): 3793-3799.   doi: 10.1063/1.1789266
[3] BRINGA E M, ROSOLANKOVA K, RUDD R E, et al.  Shock deformation of face-centred-cubic metals on subnanosecond timescales[J]. Nature Materials, 2006, 5(10): 805-809.   doi: 10.1038/nmat1735
[4] BRINGA E M, CARO A, VICTORIA M, et al.  The atomistic modeling of wave propagation in nanocrystals[J]. JOM, 2005, 57(9): 67-70.   doi: 10.1007/s11837-005-0119-9
[5] BRINGA E M, CARO A, WANG Y, et al.  Ultrahigh strength in nanocrystalline materials under shock loading[J]. Science, 2005, 309(5742): 1838-1841.   doi: 10.1126/science.1116723
[6] WANG Y M, BRINGA E M, MCNANEY J M, et al.  Deforming nanocrystalline nickel at ultrahigh strain rates[J]. Applied Physics Letters, 2006, 88(6): 061917-.   doi: 10.1063/1.2173257
[7] NEOGI A, MITRA N.  A metastable phase of shocked bulk single crystal copper: an atomistic simulation study[J]. Scientific Reports, 2017, 7(1): 7337-.   doi: 10.1038/s41598-017-07809-1
[8] KADAU K, GERMANN T C, LOMDAHL P S, et al.  Shock waves in polycrystalline iron[J]. Physical Review Letters, 2007, 98(13): 135701-.   doi: 10.1103/PhysRevLett.98.135701
[9]

赵丰鹏. 纳米多孔金属铜冲击响应的分子动力学模拟研究 [D]. 合肥: 中国科学技术大学, 2014.

ZHAO F P. Molecular dynamic simulationj on shock response of nanoporous Cu [D]. Hefei: University of Science and Technology of China, 2014.

[10] 马文, 祝文军, 张亚林, 等.  纳米多晶铁的冲击相变研究[J]. 物理学报, 2011, 60(6): 066404-.   doi: 10.7498/aps.60.066404
MA W, ZHU W J, ZHANG Y L, et al.  Shock-induced phase transformation in nanocrystalline iron[J]. Acta Physica Sinica, 2011, 60(6): 066404-.   doi: 10.7498/aps.60.066404
[11] 马文, 祝文军, 陈开果, 等.  晶界对纳米多晶铝中冲击波阵面结构影响的分子动力学研究[J]. 物理学报, 2011, 60(1): 016107-.   doi: 10.7498/aps.60.016107
MA W, ZHU W J, CHEN K G, et al.  Molecular dynamics investigation of shock front in nanocrystalline aluminum: grain boundary effects[J]. Acta Physica Sinica, 2011, 60(1): 016107-.   doi: 10.7498/aps.60.016107
[12]

马文. 冲击压缩下纳米多晶金属塑性及相变机制的分子动力学研究[D]. 长沙: 国防科学技术大学, 2011.

MA W. Molecular dynamics investigations on the mechanisms of plastic deformation and phase transformation of nanocrystalline metals under shock compression [D]. Changsha: National University of Defense Technology, 2011.

[13] 马文, 陆彦文.  纳米多晶铜中冲击波阵面的分子动力学研究[J]. 物理学报, 2013, 62(3): 036201-.   doi: 10.7498/aps.62.036201
MA W, LU Y W.  Molecular dynamics investigation of shock front in nanocrystalline copper[J]. Acta Physica Sinica, 2013, 62(3): 036201-.   doi: 10.7498/aps.62.036201
[14] MA W, ZHU W J, JING F Q.  The shock-front structure of nanocrystalline aluminum[J]. Applied Physics Letters, 2010, 97(12): 121903-.   doi: 10.1063/1.3490643
[15] MA W, ZHU W, HOU Y.  A comparative study on shock compression of nanocrystalline Al and Cu: shock profiles and microscopic views of plasticity[J]. Journal of Applied Physics, 2013, 114(16): 163504-.   doi: 10.1063/1.4826624
[16] 陈开果, 祝文军, 马文, 等.  冲击波在纳米金属铜中传播的分子动力学模拟[J]. 物理学报, 2010, 59(2): 1225-1232.   doi: 10.7498/aps.59.1225
CHEN K G, ZHU W J, MA W, et al.  Propagation of shockwave in nanocrystalline copper: molecular dynamics simulation[J]. Acta Physica Sinica, 2010, 59(2): 1225-1232.   doi: 10.7498/aps.59.1225
[17] 邵建立, 王裴, 何安民, 等.  冲击诱导金属铝表面微射流现象的微观模拟[J]. 物理学报, 2012, 61(18): 184701-.   doi: 10.7498/aps.61.184701
SHAO J L, WANG P, HE A M, et al.  Microscopic simulation on shock-induced micro-jet ejection from metal Al surface[J]. Acta Physica Sinica, 2012, 61(18): 184701-.   doi: 10.7498/aps.61.184701
[18] 邵建立, 秦承森, 王裴.  动态压缩下马氏体相变力学性质的微观研究[J]. 物理学报, 2009, 58(3): 1936-1941.   doi: 10.3321/j.issn:1000-3290.2009.03.087
SHAO J L, QIN C S, WANG P.  Atomistic simulation of mechanical properties of martensitic transformation under dynamic compression[J]. Acta Physica Sinica, 2009, 58(3): 1936-1941.   doi: 10.3321/j.issn:1000-3290.2009.03.087
[19] 邵建立, 王裴, 秦承森, 等.  铁冲击相变的分子动力学研究[J]. 物理学报, 2007, 56(9): 5389-5393.   doi: 10.3321/j.issn:1000-3290.2007.09.067
SHAO J L, WANG P, QIN C S, et al.  Shock-induced phase transformations of iron studied with molecular dynamics[J]. Acta Physica Sinica, 2007, 56(9): 5389-5393.   doi: 10.3321/j.issn:1000-3290.2007.09.067
[20] 何安民, 邵建立, 秦承森, 等.  单晶Cu冲击加载及卸载下塑性行为的微观模拟[J]. 物理学报, 2009, 58(8): 5667-5672.   doi: 10.3321/j.issn:1000-3290.2009.08.082
HE A M, SHAO J L, QIN C S, et al.  Molecular dynamics study on the plastic behavior of monocrystalline copper under shock loading and unloading[J]. Acta Physica Sinica, 2009, 58(8): 5667-5672.   doi: 10.3321/j.issn:1000-3290.2009.08.082
[21] ARMAN B, LUO S N, GERMANN T C, et al.  Dynamic response of Cu46Zr54 metallic glass to high-strain-rate shock loading: plasticity, spall, and atomic-level structures[J]. Physical Review B, 2010, 81(14): 144201-.   doi: 10.1103/PhysRevB.81.144201
[22] ZONG H, LOOKMAN T, DING X, et al.  Anisotropic shock response of titanium: reorientation and transformation mechanisms[J]. Acta Materialia, 2014, 65(4): 10-18.
[23] XIE Y, HAN L B, AN Q, et al.  Release melting of shock-loaded single crystal Cu[J]. Journal of Applied Physics, 2009, 105(6): 066103-.   doi: 10.1063/1.3099597
[24] LUO S N, GERMANN T C, TONKS D L.  The effect of vacancies on dynamic response of single crystal Cu to shock waves[J]. Journal of Applied Physics, 2010, 107(5): 056102-.   doi: 10.1063/1.3326941
[25] YU Y, LI C, MA H H, et al.  Deformation and spallation of explosive welded steels under gas gun shock loading[J]. Chinese Physics Letters, 2018, 35(1): 018101-.   doi: 10.1088/0256-307X/35/1/018101
[26] LUO S N, GERMANN T C, DESAI T G, et al.  Anisotropic shock response of columnar nanocrystalline Cu[J]. Journal of Applied Physics, 2010, 107(12): 123507-.   doi: 10.1063/1.3437654
[27] LUO S N, GERMANN T C, TONKS D L, et al.  Shock wave loading and spallation of copper bicrystals with asymmetric Σ3〈110〉tilt grain boundaries[J]. Journal of Applied Physics, 2010, 108(9): 093526-.   doi: 10.1063/1.3506707
[28] WANG L, ZHAO F, ZHAO F P, et al.  Grain boundary orientation effects on deformation of Ta bicrystal nanopillars under high strain-rate compression[J]. Journal of Applied Physics, 2014, 115(5): 053528-.   doi: 10.1063/1.4864427
[29] CAO F, BEYERLEIN I J, ADDESSIO F L, et al.  Orientation dependence of shock-induced twinning and substructures in a copper bicrystal[J]. Acta Materialia, 2010, 58(2): 549-559.   doi: 10.1016/j.actamat.2009.09.033
[30] MEYERS M A, CARVALHO M S.  Shock-front irregularities in polycrystalline metals[J]. Materials Science and Engineering, 1976, 24(1): 131-135.   doi: 10.1016/0025-5416(76)90102-6
[31] BARBER J L, KADAU K.  Shock-front broadening in polycrystalline materials[J]. Physical Review B, 2008, 77(14): 144106-.   doi: 10.1103/PhysRevB.77.144106
[32] ZHAKHOVSKⅡ V V, ZYBIN S V, NISHIHARA K, et al.  Shock wave structure in Lennard-Jones crystal via molecular dynamics[J]. Physical Review Letters, 1999, 83(6): 1175-1178.   doi: 10.1103/PhysRevLett.83.1175
[33] GERMANN T C, HOLIAN B L, LOMDAHL P S, et al.  Orientation dependence in molecular dynamics simulations of shocked single crystals[J]. Physical Review Letters, 2000, 84(23): 5351-5354.   doi: 10.1103/PhysRevLett.84.5351
[34] HOLIAN B L, LOMDAHL P S.  Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations[J]. Science, 1998, 280(5372): 2085-2088.   doi: 10.1126/science.280.5372.2085
[35] HOLIAN B L.  Molecular dynamics comes of age for shockwave research[J]. Shock Waves, 2004, 13(6): 489-495.
[36] KADAU K, GERMANN T C, LOMDAHL P S, et al.  Microscopic view of structural phase transitions induced by shock waves[J]. Science, 2002, 296(5573): 1681-1684.   doi: 10.1126/science.1070375
[37] GERMANN T C, HOLIAN B L, LOMDAHL P S, et al.  Dislocation structure behind a shock front in fcc perfect crystals: atomistic simulation results[J]. Metallurgical and Materials Transactions A, 2004, 35(9): 2609-2615.   doi: 10.1007/s11661-004-0206-5
[38] ROBERTSON D H, BRENNER D W, WHITE C T.  Split shock waves from molecular dynamics[J]. Physical Review Letters, 1991, 67(22): 3132-3135.   doi: 10.1103/PhysRevLett.67.3132
[39] KELCHNER C L, PLIMPTON S J, HAMILTON J C.  Dislocation nucleation and defect structure during surface indentation[J]. Physical Review B, 1998, 58(17): 11085-11088.   doi: 10.1103/PhysRevB.58.11085
[40] LIU C M, XU C, CHENG Y, et al.  Orientation-dependent responses of tungsten single crystal under shock compression via molecular dynamics simulations[J]. Computational Materials Science, 2015, 110: 359-367.   doi: 10.1016/j.commatsci.2015.08.051
[41] PLIMPTON S.  Fast parallel algorithms for short-range molecular-dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19.   doi: 10.1006/jcph.1995.1039
[42] ZHOU X W, JOHNSON R A, WADLEY H N G.  Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers[J]. Physical Review B, 2004, 69(14): 144113-.   doi: 10.1103/PhysRevB.69.144113
[43]

Sandia National Laboratories. Lammps users manual [Z]. Albuquerque, NM: Sandia National Laboratories, 2016.

[44] STUKOWSKI A.  Visualization and analysis of atomistic simulation data with ovito-the open visualization tool[J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012-.   doi: 10.1088/0965-0393/18/1/015012