[1] OYAMA S T.  Crystal structure and chemical reactivity of transition metal carbides and nitrides[J]. Journal of Solid State Chemistry, 1992, 96(2): 442-445.   doi: 10.1016/S0022-4596(05)80279-8
[2] LÉVY F, HONES P, SCHMID P E, et al.  Electronic states and mechanical properties in transition metal nitrides[J]. Surface and Coatings Technology, 1999, 120/121: 284-290.   doi: 10.1016/S0257-8972(99)00498-3
[3] IVANOVSKII A L.  Platinum group metal nitrides and carbides: synthesis, properties and simulation[J]. Russian Chemical Reviews, 2009, 78(4): 303-318.   doi: 10.1070/RC2009v078n04ABEH004036
[4] GILMAN J J, CUMBERLAND R W, KANER R B.  Design of hard crystals[J]. International Journal of Refractory Metals and Hard Materials, 2006, 24(1/2): 1-5.
[5] HAINES J, LEGER J M, BOCQUILLON G.  Synthesis and design of superhard materials[J]. Annual Review of Materials Research, 2001, 31(1): 1-23.   doi: 10.1146/annurev.matsci.31.1.1
[6] CROWHURST J C, GONCHAROV A F, SADIGH B, et al.  Synthesis and characterization of the nitrides of platinum and iridium[J]. Science, 2006, 311(5765): 1275-1278.   doi: 10.1126/science.1121813
[7] GREGORYANZ E, SANLOUP C, SOMAYAZULU M, et al.  Synthesis and characterization of a binary noble metal nitride[J]. Nature Materials, 2004, 3(5): 294-297.   doi: 10.1038/nmat1115
[8] YOUNG A F, SANLOUP C, GREGORYANZ E, et al.  Synthesis of novel transition metal nitrides IrN2 and OsN2[J]. Physical Review Letters, 2006, 96(15): 155501-.   doi: 10.1103/PhysRevLett.96.155501
[9] ZHAO E, WU Z.  Structural, electronic and mechanical properties of ReN2 from first principles[J]. Computational Materials Science, 2008, 44(2): 531-535.   doi: 10.1016/j.commatsci.2008.04.016
[10] LI Y, ZENG Z.  New potential super-incompressible phase of ReN2[J]. Chemical Physics Letters, 2009, 474(1/2/3): 93-96.
[11] DU X P, WANG Y X, LO V C.  Investigation of tetragonal ReN2 and WN2 with high shear moduli from first-principles calculations[J]. Physics Letters A, 2010, 374(25): 2569-2574.   doi: 10.1016/j.physleta.2010.04.020
[12] KAWAMURA F, YUSA H, TANIGUCHI T.  Synthesis of rhenium nitride crystals with MoS2 structure[J]. Applied Physics Letters, 2012, 100(25): 251910-.   doi: 10.1063/1.4729586
[13] WANG Y, YAO T, YAO J L, et al.  Does the real ReN2 have the MoS2 structure?[J]. Physical Chemistry Chemical Physics, 2013, 15(1): 183-187.   doi: 10.1039/C2CP43010J
[14] WANG Y, LV J, ZHU L, et al.  Crystal structure prediction via particle-swarm optimization[J]. Physical Review B, 2010, 82(9): 094116-.   doi: 10.1103/PhysRevB.82.094116
[15] BOUHEMADOU A, KHENATA R.  Pseudo-potential calculations of structural and elastic properties of spinel oxides ZnX2O4 (X= Al, Ga, In) under pressure effect[J]. Physics Letters A, 2006, 360(2): 339-343.   doi: 10.1016/j.physleta.2006.08.008
[16] LOUAIL L, MAOUCHE D, ROUMILI A, et al.  Calculation of elastic constants of 4d transition metals[J]. Materials Letters, 2004, 58(24): 2975-2978.   doi: 10.1016/j.matlet.2004.04.033
[17] SEGALL M D, LINDAN P J D, PROBERT M J, et al.  First-principles simulation:ideas, illustrations and the CASTEP code[J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717-2744.   doi: 10.1088/0953-8984/14/11/301
[18] VANDERBILT D.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, 1990, 41(11): 7892-7895.   doi: 10.1103/PhysRevB.41.7892
[19] PERDEW J P, BURKE K, ERNZERHOF M.  Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.   doi: 10.1103/PhysRevLett.77.3865
[20] PERDEW J P, CHEVARY J A, VOSKO S H, et al.  Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B, 1992, 46(11): 6671-6687.   doi: 10.1103/PhysRevB.46.6671
[21] PFROMMER B G, COTE M, LOUIE S G, et al.  Relaxation of crystals with the quasi-Newton method[J]. Journal of Computational Physics, 1997, 131(1): 233-240.   doi: 10.1006/jcph.1996.5612
[22] MONKHORST H J, PACK J D.  Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192.   doi: 10.1103/PhysRevB.13.5188

WALLACE D C. Thermodynamics of crystals [M]. New York: Wiley, 1972: 582.

[24] WANG J, LI J, YIP S, et al.  Mechanical instabilities of homogeneous crystals[J]. Physical Review B, 1995, 52(17): 12627-12635.   doi: 10.1103/PhysRevB.52.12627
[25] BARRON T H K, KLEIN M L.  Second-order elastic constants of a solid under stress[J]. Proceedings of the Physical Society, 1965, 85(3): 523-532.   doi: 10.1088/0370-1328/85/3/313
[26] BIRCH F.  Finite elastic strain of cubic crystals[J]. Physical Review, 1947, 71(11): 809-824.   doi: 10.1103/PhysRev.71.809
[27] ZHAO Z L, BAO K, LI D, et al.  Nitrogen concentration driving the hardness of rhenium nitrides[J]. Scientific Reports, 2014, 4(1): 4797-.
[28] WATT J P.  Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with orthorhombic symmetry[J]. Journal of Applied Physics, 1979, 50(10): 6290-6295.   doi: 10.1063/1.325768
[29] HILL R.  The elastic behaviour of a crystalline aggregate[J]. Proceedings of the Physical Society, Section A, 1952, 65(5): 349-.   doi: 10.1088/0370-1298/65/5/307
[30] PUGH S F.XCII.  Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(367): 823-843.   doi: 10.1080/14786440808520496

FRANTSEVICH I N, VORONOV F F, BOKUTA S A. Elastic constants and elastic moduli of metals and insulators [M]. Kiev: Naukova Dumka, 1983: 60–180.

[32] IVANOVSKII A L.  Microhardness of compounds of rhenium with boron, carbon, and nitrogen[J]. Journal of Superhard Materials, 2012, 34(2): 75-80.   doi: 10.3103/S1063457612020013
[33] TIAN Y J, XU B, ZHAO Z S.  Microscopic theory of hardness and design of novel superhard crystals[J]. International Journal of Refractory Metals and Hard Materials, 2012, 33: 93-106.   doi: 10.1016/j.ijrmhm.2012.02.021