[1] JAEGER H M, NAGEL S R.  Granular solids, liquids, and gases[J]. Reviews of Modern Physics, 1996, 68(4): 1259-1273.   doi: 10.1103/RevModPhys.68.1259
[2] 张家铭, 汪稔, 张阳明, 等.  土体颗粒破碎研究进展[J]. 岩土力学, 2003, (S2): 661-665.
ZHANG J M, WANG R, ZHANG Y M, et al.  Advance in studies of soil grain crush[J]. Rock and Soil Mechanics, 2003, (S2): 661-665.
[3]

王礼立. 应力波基础 [M]. 北京: 国防工业出版社, 1985: 45–47.

WANG L L. Foundation of stress waves [M]. Beijing: National Defense Industry Press, 1985: 45–47.

[4]

王肖钧. 分层人防工程防护结构对地下爆炸波的阻尼、耗散和导向作用研究 [R]. 合肥: 中国科学技术大学近代力学系, 2008.

WANG X J. Research on the damping, dissipation and guiding effect of layered civil air defense engineering structure on underground explosion waves [R]. Hefei: University of Science and Technology of China, 2008.

[5] LI J C, MA G W.  Experimental study of stress wave propagation across a filled rock joint[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(3): 471-478.   doi: 10.1016/j.ijrmms.2008.11.006
[6] 季顺迎, 李鹏飞, 陈晓东.  冲击荷载下颗粒物质缓冲性能的试验研究[J]. 物理学报, 2012, 61(18): 184703-.   doi: 10.7498/aps.61.184703
JI S Y, LI P F, CHEN X D.  Experiments on shock-absorbing capacity of granular matter under impact load[J]. Acta Physica Sinica, 2012, 61(18): 184703-.   doi: 10.7498/aps.61.184703
[7] 赵跃堂, 郑守军, 郑大亮, 等.  爆炸波在饱和土介质中传播时压力变化规律的试验研究[J]. 防灾减灾工程学报, 2004, 24(1): 60-65.
ZHAO Y T, ZHENG S J, ZHENG D L, et al.  Experimental investigation on pressure variation during explosion wave propagation in saturated soils[J]. Journal of Disaster Prevention and Mitigation Engineering, 2004, 24(1): 60-65.
[8]

赵凯. 分层防护层对爆炸波的衰减和弥散作用研究 [D]. 合肥: 中国科学技术大学, 2007: 25–40.

ZHAO K. The attenuation and dispersion effects on explosive wave of layered protective engineering [D]. Hefei: University of Science and Technology of China, 2007: 25–40.

[9] 魏久淇, 吕亚茹, 刘国权, 等.  钙质砂一维冲击响应及吸能特性试验[J]. 岩土力学, 2019, 40(1): 191-198.
WEI J Q, LÜ Y R, LIU G Q, et al.  One-dimensional impact responses and energy absorption of calcareous sand[J]. Rock and Soil Mechanics, 2019, 40(1): 191-198.
[10] YU X, CHEN L, FANG Q, et al.  Determination of attenuation effects of coral sand on the propagation of impact-induced stress wave[J]. International Journal of Impact Engineering, 2019, 125(1): 63-82.
[11] 祁原, 黄俊杰, 陈明祥.  可破碎颗粒体在动力载荷下的耗能特性[J]. 力学学报, 2015, 47(2): 254-259.
QI Y, HUANG J J, CHEN M X.  Energy dissipation characteristics of crushable granules under dynamic excitations[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 254-259.
[12]

郑文. 颗粒物质体系复杂动力学行为研究 [D]. 合肥: 中国科学技术大学, 2013: 17–36.

ZHENG W. A study on complex dynamic properties of granular material [D]. Hefei: University of Science and Technology of China, 2013: 17–36.

[13]

黄俊宇. 冲击载荷下脆性颗粒材料多尺度变形破碎特性研究 [D]. 合肥: 中国科学技术大学, 2016: 19–40.

HUANG J Y. Dynamic multiscale deformation behavior and particle-breakage properties of granular materials subjected to impact loading [D]. Hefei: University of Science and Technology of China, 2016: 19–40.

[14] 王刚, 叶沁果, 查京京.  珊瑚礁砂砾料力学行为与颗粒破碎的试验研究[J]. 岩土工程学报, 2018, 40(5): 802-810.   doi: 10.11779/CJGE201805004
WANG G, YE Q G, ZHA J J.  Experimental study on mechanical behavior and particle crushing of coral sand-gravel fill[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 802-810.   doi: 10.11779/CJGE201805004
[15] 张科芬, 张升, 滕继东, 等.  颗粒破碎的三维离散元模拟研究[J]. 岩土力学, 2017, 38(7): 2119-2127.
ZHANG K F, ZHANG S, TENG J D, et al.  3D numerical simulation of particle breaking using discrete element[J]. Rock and Soil Mechanics, 2017, 38(7): 2119-2127.
[16] 张家铭, 汪稔, 石祥锋, 等.  侧限条件下钙质砂压缩和破碎特性试验研究[J]. 岩石力学与工程学报, 2005, 24(18): 3327-3331.   doi: 10.3321/j.issn:1000-6915.2005.18.022
ZHANG J M, WANG R, SHI X F, et al.  Compression and crushing behavior of calcareous sand under confined compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(18): 3327-3331.   doi: 10.3321/j.issn:1000-6915.2005.18.022
[17] POTYONDY D O, CUNDALL P A.  A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364.   doi: 10.1016/j.ijrmms.2004.09.011
[18] ZHANG S, ZHANG F.  A thermo-elasto-viscoplastic model for soft sedimentary rock[J]. Soils and Foundations, 2009, 49(4): 583-595.   doi: 10.3208/sandf.49.583
[19] WNG J F, LI Y L, GAO Y B, et al.  Experimental study on structural properties influencing on compressibility of soft clay[J]. Advanced Materials Research, 2011, 261/262/263: 767-1772.
[20] YAN W M, LI X S.  Mechanical response of a medium-fine-grained decomposed granite in Hong Kong[J]. Engineering Geology, 2012, 129/130: 1-8.
[21] HUANG J Y, XU S L, HU S S.  Influence of particle breakage on the dynamic compression responses of brittle granular materials[J]. Mechanics of Materials, 2014, 68: 15-28.   doi: 10.1016/j.mechmat.2013.08.002