[1] CHAO W, HARTENECK B D, LIDDLE J A, et al.  Soft X-ray microscopy at a spatial resolution better than 15 nm[J]. Nature, 2005, 435(7046): 1210-.   doi: 10.1038/nature03719
[2] BARBER J L, BARNES C W, SANDBERG R L, et al.  Diffractive imaging at large fresnel number: challenge of dynamic mesoscale imaging with hard X-rays[J]. Physical Review B, 2014, 89(18): 184105-.   doi: 10.1103/PhysRevB.89.184105
[3] XIAO X H, SHEN Q.  Wave propagation and phase retrieval in fresnel diffraction by a distorted-object approach[J]. Physical Review B, 2005, 72(3): 033103-.   doi: 10.1103/PhysRevB.72.033103
[4] MIAO J W, AMONETTE J E, NISHINO Y, et al.  Direct determination of the absolute electron density of nanostructured and disordered materials at sub-10-nm resolution[J]. Physical Review B, 200, 68(1): 012201-.
[5] SAYER D.  Some implications of a theorem due to shannon[J]. Acta Crystallographica, 1952, 5: 843-.
[6] GERCHBERG R W, SAXTON W O.  A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972, 35: 237-.
[7] FIENUP J R.  Phase retrieval algorithm: a comparison[J]. Applied Optics, 1982, 21: 2758-.   doi: 10.1364/AO.21.002758
[8] ELSER V.  Phase retrieval by iterated projections[J]. Journal of the Optical Society of America, 2003, 20(1): 40-.   doi: 10.1364/JOSAA.20.000040
[9] CHEN C C, MIAO J, WANG C W, et al.  Application of optimization technique to noncrystalline X-ray diffraction microscopy: guided hybrid input-output method[J]. Physical Review B, 2007, 76(6): 064113-.   doi: 10.1103/PhysRevB.76.064113
[10] LUKE D R.  Relaxed averaged alternating reflections for diffraction imaging[J]. Inverse Problems, 2005, 21: 37-.   doi: 10.1088/0266-5611/21/1/004
[11] MARCHESINI S, HE H, CHAPMAN H N, et al.  X-ray image reconstruction from a diffraction pattern alone[J]. Physical Review B, 2003, 68: 140101-.   doi: 10.1103/PhysRevB.68.140101
[12] MIAO J, SYAER D, CHAPMAN H N.  Phase retrieval from the magnitude of the fourier transforms of nonperiodic objects[J]. Josa A, 1998, 15: 1662-.   doi: 10.1364/JOSAA.15.001662
[13] 周光照, 佟亚军, 陈灿, 等.  相干X射线衍射成像的数字模拟研究[J]. 物理学报, 2011, 60(2): 028701-.
ZHOU G Z, TONG Y J, CHEN C, et al.  Digital simulation for coherent X-ray diffractive imaging[J]. Acta Physica Sinica, 2011, 60(2): 028701-.
[14] VARTANYANTS I A, ROBINSON I K.  Partial coherence effects on the imaging of small crystals using coherent X-ray diffraction[J]. Journal of Physics: Condensed Matter, 2001, 13(47): 10593-.   doi: 10.1088/0953-8984/13/47/305
[15] MIAO J W, CHARALAMBOUS P, KIRZ J, et al.  Extending the methodology of X-ray crystallography to allow imaging of micrometer-sized non-crystalline specimens[J]. Nature, 1999, 400: 342-.   doi: 10.1038/22498
[16] MIAO J W, NISHINO Y, KOHNURA Y, et al.  Quantitative image reconstruction of GaN quantum dots from oversampled diffraction intensities alone[J]. Physical Review Letters, 2005, 95(8): 085503-.   doi: 10.1103/PhysRevLett.95.085503
[17] NISHINO Y, TAKAHASHI Y, IMAMOTO N, et al.  Three-dimensional visualization of a human chromosome using coherent X-ray diffraction[J]. Physical Review Letters, 2009, 102(1): 018101-.   doi: 10.1103/PhysRevLett.102.018101
[18] EKEBERG T, SVENDA M, ABERGEL C, et al.  Three-dimensional reconstruction of the giant mimivirus particle with an X-ray free-electron laser[J]. Physical Review Letters, 2015, 114(9): 098102-.   doi: 10.1103/PhysRevLett.114.098102
[19] DUANE N T, ELSER V.  Reconstruction algorithm for single-particle diffraction imaging experiments[J]. Physical Review E, 2009, 80(2): 026705-.   doi: 10.1103/PhysRevE.80.026705
[20] MIAO J W, CHEN C C, SONG C, et al.  Three-dimensional GaN-Ga2O3 core shell structure revealed by X-ray diffraction microscopy[J]. Physical Review Letters, 2006, 97(21): 215503-.   doi: 10.1103/PhysRevLett.97.215503
[21] TAKAHASHI Y, NISHINO Y, TSUTSUMI R, et al.  High-resolution projection image reconstruction of thick objects by hard X-ray diffraction microscopy[J]. Physical Review B, 2010, 82(21): 214102-.   doi: 10.1103/PhysRevB.82.214102
[22] THIBAULT P, DIEROLF M, MENZEL A, et al.  High-resolution scanning X-ray diffraction microscopy[J]. Science, 2008, 321(5887): 379-.   doi: 10.1126/science.1158573
[23] RODENBURG J M, HURST A C, CULLIS A G, et al.  Hard-X-ray lensless imaging of extended objects[J]. Physical Review Letters, 2007, 98(3): 034801-.   doi: 10.1103/PhysRevLett.98.034801
[24] KLAUS G, PIERRE T, SEBASTIAN K, et al.  Quantitative biological imaging by ptychographic X-ray diffraction microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(2): 529-.   doi: 10.1073/pnas.0905846107
[25] DIEROLF M, MENZEL A, THIBAULT P, et al.  Ptychographic X-ray computed tomography at the nanoscale[J]. Nature, 2010, 467(7314): 436-.   doi: 10.1038/nature09419
[26] ROBINSON I K, VARTANYANTS I A, WILLIAMS G J, et al.  Reconstruction of the shapes of gold nanocrystals using coherent X-ray diffraction[J]. Physical Review Letters, 2001, 87(19): 195505-.   doi: 10.1103/PhysRevLett.87.195505
[27] WILLIAMS G J, PFEIFER M A, VARTANYANTS I A, et al.  Three-dimensional imaging of microstructure in Au nanocrystals[J]. Physical Review Letters, 2003, 90(17): 175501-.   doi: 10.1103/PhysRevLett.90.175501
[28] PFEIFER M A, WILLIAMS G J, VARTANYANTS I A, et al.  Three-dimensional mapping of a deformation field inside a nanocrystal[J]. Nature, 2006, 442(7098): 63-.   doi: 10.1038/nature04867
[29] NEWTON M C, LEAKE S J, HARDER R, et al.  Three-dimensional imaging of strain in a single ZnO nanorod[J]. Nature Materials, 2010, 9(2): 279-.
[30] HARDER R, ROBINSON I.  Coherent X-ray diffraction imaging of strain at the nanoscale[J]. Nature Materials, 2009, 8(4): 291-.   doi: 10.1038/nmat2400
[31] GANG X, OUSSAMA M, MANFRED R, et al.  Coherent X-ray diffraction imaging and characterization of strain in silicon-on-insulator nanostructures[J]. Advanced Materials, 2014, 26(46): 7747-.   doi: 10.1002/adma.v26.46