[1] LARSEN J C.  Low frequency (0.1-6.0 CPD) electromagnetic study of deep mantle electrical conductivity beneath the Hawaiian islands[J]. Geophysical Journal International, 1975, 43(1): 17-46.   doi: 10.1111/j.1365-246X.1975.tb00626.x
[2] FILLOUX J H.  Ocean-floor magnetotelluric sounding over North Central Pacific[J]. Nature, 1977, 269(5626): 297-301.   doi: 10.1038/269297a0
[3] OLDENBURG D W.  Conductivity structure of oceanic upper mantle beneath the Pacific plate[J]. Geophysical Journal International, 1981, 65(2): 359-394.   doi: 10.1111/j.1365-246X.1981.tb02717.x
[4] SHANKLAND T J, O’CONNELL R J, WAFF H S.  Geophysical constraints on partial melt in the upper mantle[J]. Reviews of Geophysics, 1981, 19(3): 394-406.   doi: 10.1029/RG019i003p00394
[5] EVANS R L, HIRTH G, BABA K, et al.  Geophysical evidence from the MELT area for compositional controls on oceanic plates[J]. Nature, 2005, 437(7056): 249-252.   doi: 10.1038/nature04014
[6] NAIF S, KEY K, CONSTABLE S, et al.  Melt-rich channel observed at the lithosphere-asthenosphere boundary[J]. Nature, 2013, 495(7441): 356-359.   doi: 10.1038/nature11939
[7] GAILLARD F, MALKI M, IACONO-MARZIANO G, et al.  Carbonatite melts and electrical conductivity in the asthenosphere[J]. Science, 2008, 322(5906): 1363-1365.   doi: 10.1126/science.1164446
[8] KARATO S I.  The role of hydrogen in the electrical conductivity of the upper mantle[J]. Nature, 1990, 347(6290): 272-273.   doi: 10.1038/347272a0
[9] WANG D, MOOKHERJEE M, XU Y, et al.  The effect of water on the electrical conductivity of olivine[J]. Nature, 2006, 443(7114): 977-980.   doi: 10.1038/nature05256
[10] YOSHINO T, MATSUZAKI T, YAMASHITA S, et al.  Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere[J]. Nature, 2006, 443(7114): 973-976.   doi: 10.1038/nature05223
[11] YOSHINO T, MATSUZAKI T, SHATSKIY A, et al.  The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle[J]. Earth and Planetary Science Letters, 2009, 288(1/2): 291-300.
[12] POE B T, ROMANO C, NESTOLA F, et al.  Electrical conductivity anisotropy of dry and hydrous olivine at 8 GPa[J]. Physics of the Earth and Planetary Interiors, 2010, 181(3/4): 103-111.
[13] DUBA A G, SHANKLAND T J.  Free carbon & electrical conductivity in the Earth’s mantle[J]. Geophysical Research Letters, 1982, 9(11): 1271-1274.   doi: 10.1029/GL009i011p01271
[14] LASTOVICKOVÁ M.  A review of laboratory measurements of the electrical conductivity of rocks and minerals[J]. Physics of the Earth and Planetary Interiors, 1991, 66(1/2): 1-11.
[15] DAI L, KARATO S.  High and highly anisotropic electrical conductivity of the asthenosphere due to hydrogen diffusion in olivine[J]. Earth and Planetary Science Letters, 2014, 408: 79-86.   doi: 10.1016/j.jpgl.2014.10.003
[16] DAI L, KARATO S.  The effect of pressure on the electrical conductivity of olivine under the hydrogen-rich conditions[J]. Physics of the Earth and Planetary Interiors, 2014, 232: 51-56.   doi: 10.1016/j.pepi.2014.03.010
[17] YANG X.  Orientation-related electrical conductivity of hydrous olivine, clinopyroxene and plagioclase and implications for the structure of the lower continental crust and uppermost mantle[J]. Earth and Planetary Science Letters, 2012, 317: 241-250.
[18] XU Y, SHANKLAND T J, DUBA A G.  Pressure effect on electrical conductivity of mantle olivine[J]. Physics of the Earth and Planetary Interiors, 2000, 118(1/2): 149-161.
[19] YOSHINO T, SHIMOJUKU A, SHAN S, et al.  Effect of temperature, pressure and iron content on the electrical conductivity of olivine and its high-pressure polymorphs[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B8): 205-220.
[20] YOSHINO T, ZHANG B, RHYMER B, et al.  Pressure dependence of electrical conductivity in forsterite[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(1): 158-171.   doi: 10.1002/2016JB013555
[21] BORUP K A, FISCHER K F, BROWN D R, et al.  Measuring anisotropic resistivity of single crystals using the van der Pauw technique[J]. Physical Review B, 2015, 92(4): 045210-.   doi: 10.1103/PhysRevB.92.045210
[22] SHEN Y, KUMAR R S, PRAVICA M, et al.  Characteristics of silicone fluid as a pressure transmitting medium in diamond anvil cells[J]. Review of Scientific Instruments, 2004, 75(11): 4450-4454.   doi: 10.1063/1.1786355
[23] MAO H K, XU J A, BELL P M.  Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B5): 4673-4676.   doi: 10.1029/JB091iB05p04673
[24] 刘锦, 孙樯.  硅油作为压力计的拉曼光谱研究[J]. 光谱学与光谱分析, 2010, 30(9): 2390-2392.   doi: 10.3964/j.issn.1000-0593(2010)09-2390-03
LIU J, SUN Q.  Raman spectroscopic study on silicone fluid as pressure gauge[J]. Spectroscopy and Spectral Analysis, 2010, 30(9): 2390-2392.   doi: 10.3964/j.issn.1000-0593(2010)09-2390-03
[25] 王晓霞, 李志慧, 陈晨, 等.  硅油的高压拉曼散射[J]. 高等学校化学学报, 2014, 35(11): 2384-2389.
WANG X X, LI Z H, LI C, et al.  High pressure Raman spectra of silicone oil[J]. Chemical Journal of Chinese Universities, 2014, 35(11): 2384-2389.
[26] ROBERTS J J, TYBURCZY J A.  Frequency dependent electrical properties of polycrystalline olivine compacts[J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B10): 16205-16222.   doi: 10.1029/91JB01574
[27] SINCLAIR D C, WEST A R.  Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance[J]. Journal of Applied Physics, 1989, 66(8): 3850-3856.   doi: 10.1063/1.344049

JOHNSON D. ZView: a software program for IES analysis. Version 2.8 [CP/OL]. Southern Pines, NC: Scribner Associates [2019-03-05]. http://www.scribner.com.

[29] ZHA C, DUFFY T S, DOWNS R T, et al.  Brillouin scattering and X-ray diffraction of San Carlos olivine: direct pressure determination to 32 GPa[J]. Earth and Planetary Science Letters, 1998, 159(1/2): 25-33.
[30] DU FRANE W L, TYBURCZY J A.  Deuterium-hydrogen exchange in olivine: implications for point defects and electrical conductivity[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(3): Q03004-.
[31] GODDAT A, PEYRONNEAU J, POIRIER J P.  Dependence on pressure of conduction by hopping of small polarons in minerals of the Earth’s lower mantle[J]. Physics and Chemistry of Minerals, 1999, 27(2): 81-87.   doi: 10.1007/s002690050243
[32] KATSURA T, SATO K, ITO E.  Electrical conductivity of silicate perovskite at lower-mantle conditions[J]. Nature, 1998, 395(6701): 493-495.   doi: 10.1038/26736
[33] LIN J F, WEIR S T, JACKSON D D, et al.  Electrical conductivity of the lower-mantle ferropericlase across the electronic spin transition[J]. Geophysical Research Letters, 2007, 34(16): L16305-.
[34] OHTA K, HIROSE K, ONODA S, et al.  The effect of iron spin transition on electrical conductivity of (Mg,Fe)O magnesiowüstite[J]. Proceedings of the Japan Academy Series B, 2007, 83(3): 97-100.   doi: 10.2183/pjab.83.97
[35] YOSHINO T, ITO E, KATSURA T, et al.  Effect of iron content on the spin transition pressure of ferropericlase[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B4): B04202-.
[36] DOBSON D P, RICHMOND N C, BRODHOLT J P.  A high-temperature electrical conduction mechanism in the lower mantle phase (Mg, Fe)1-xO[J]. Science, 1997, 275(5307): 1779-1781.   doi: 10.1126/science.275.5307.1779
[37] NEAL S L, MACKIE R L, LARSEN J C, et al.  Variations in the electrical conductivity of the upper mantle beneath North America and the Pacific Ocean[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B4): 8229-8242.   doi: 10.1029/1999JB900447
[38] TARITS P, HAUTOT S, PERRIER F.  Water in the mantle: results from electrical conductivity beneath the French Alps[J]. Geophysical Research Letters, 2004, 31(6): 265-282.
[39] JUNG H, KARATO S.  Water-induced fabric transitions in olivine[J]. Science, 2001, 293: 1460-1463.   doi: 10.1126/science.1062235