[1] FROST D J, MCCAMMON C A.  The redox state of Earth’s mantle[J]. Annual Review of Earth and Planetary Sciences, 2008, 36(1): 389-420.   doi: 10.1146/annurev.earth.36.031207.124322
[2] STAGNO V, FROST D J.  Carbon speciation in the asthenosphere: experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages[J]. Earth and Planetary Science Letters, 2010, 300(1/2): 72-84.
[3]

LITASOV K D, SHATSKIY A. Carbon-bearing magmas in the Earth’s deep interior [M]//Magmas Under Pressure. Amsterdam: Elsevier, 2018: 43–82.

[4] DASGUPTA R, HIRSCHMANN M M.  Melting in the Earth’s deep upper mantle caused by carbon dioxide[J]. Nature, 2015, 440(7084): 659-662.
[5] ROHRBACH A, SCHMIDT M W.  Redox freezing and melting in the Earth’s deep mantle resulting from carbon-iron redox coupling[J]. Nature, 2011, 472(7342): 209-212.   doi: 10.1038/nature09899
[6] DASGUPTA R, HIRSCHMANN M M.  The deep carbon cycle and melting in Earth’s interior[J]. Earth & Planetary Science Letters, 2010, 298(1/2): 1-13.
[7] SAAL A E, HAURI E H, LANGMUIR C H, et al.  Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle[J]. Nature, 2002, 419(6906): 451-455.   doi: 10.1038/nature01073
[8] HIRSCHMANN M M, DASGUPTA R.  The H/C ratios of Earth’s near-surface and deep reservoirs, and consequences for deep Earth volatile cycles[J]. Chemical Geology, 2009, 262(1/2): 4-16.
[9] DASGUPTA R.  Ingassing, storage, and outgassing of terrestrial carbon through geologic time[J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 183-229.   doi: 10.2138/rmg.2013.75.7
[10] HAZEN R M, DOWNS R T, JONES A P, et al.  Carbon mineralogy and crystal chemistry[J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 7-46.   doi: 10.2138/rmg.2013.75.2
[11] LEUNG I S.  Silicon carbide cluster entrapped in a diamond from Fuxian, China[J]. American Mineralogist, 1990, 75(9/10): 1110-1119.
[12] SCHRAUDER M, NAVON O.  Solid carbon dioxide in a natural diamond[J]. Nature, 1993, 365(6441): 42-44.   doi: 10.1038/365042a0
[13] KAMINSKY F.  Mineralogy of the lower mantle: a review of ‘super-deep’ mineral inclusions in diamond[J]. Earth-Science Review, 2012, 110(1/2/3/4): 127-147.   doi: 10.1016/j.earscirev.2011.10.005
[14] SMITH E M, SHIREY S B, NESTOLA F, et al.  Large gem diamonds from metallic liquid in Earth’s deep mantle[J]. Science, 2016, 354(6318): 1403-.   doi: 10.1126/science.aal1303
[15] STAGNO V, TANGE Y, MIYAJIMA N, et al.  The stability of magnesite in the transition zone and the lower mantle as function of oxygen fugacity[J]. Geophysical Research Letters, 2011, 38(19): 570-583.
[16] MAEDA F, OHTANI E, KAMADA S, et al.  Diamond formation in the deep lower mantle: a high-pressure reaction of MgCO3 and SiO2[J]. Scientific Reports, 2017, 7: 40602-.   doi: 10.1038/srep40602
[17] LI X, ZHANG Z, LIN J F, et al.  New high pressure phase of CaCO3 at the topmost lower mantle: Implication for the deep mantle carbon transportation[J]. Geophysical Research Letters, 2018, 45: 1355-1360.   doi: 10.1002/2017GL076536
[18] MARTIROSYAN N S, LITASOV K D, LOBANOV S S, et al.  The Mg-carbonate-Fe interaction: implication for the fate of subducted carbonates and formation of diamond in the lower mantle[J]. Geoscience Frontiers, 2019, 10(4): 1449-1458.   doi: 10.1016/j.gsf.2018.10.003
[19] DORFMAN S M, BADRO J, NABIEI F, et al.  Carbonate stability in the reduced lower mantle[J]. Earth and Planetary Science Letters, 2018, 489: 84-91.   doi: 10.1016/j.jpgl.2018.02.035
[20] HAMILTON D L.  The preparation of silicate compositions by a gelling method[J]. Mineralogical Magazine, 1968, 36(282): 832-838.   doi: 10.1180/minmag.1968.036.282.11
[21] YINGWEI F, ANGELE R, MARK F, et al.  Toward an internally consistent pressure scale[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(22): 9182-9186.   doi: 10.1073/pnas.0609013104
[22] CAMPBELL A J, DANIELSON L, RIGHTER K, et al.  High pressure effects on the iron-iron oxide and nickel-nickel oxide oxygen fugacity buffers[J]. Earth and Planetary Science Letters, 2009, 286(3/4): 556-564.
[23] MENG Y, HRUBIAK R, ROD E, et al.  New developments in laser-heated diamond anvil cell with in situ synchrotron X-ray diffraction at High Pressure Collaborative Access Team[J]. Review of Scientific Instruments, 2015, 86(7): 072201-.   doi: 10.1063/1.4926895
[24] PRAKAPENKA V B, KUBO A, KUZNETSOV A, et al.  Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium[J]. High Pressure Research, 2008, 28(3): 225-235.   doi: 10.1080/08957950802050718
[25] HOLLAND T J B, REDFERN S A T.  Unit cell refinement from powder diffraction data: the use of regression diagnostics[J]. Mineralogical Magazine, 1997, 61(404): 65-77.   doi: 10.1180/minmag.1997.061.404.07
[26] BOFFA-BALLARAN T, KURNOSOV A, GLAZYRIN K, et al.  Effect of chemistry on the compressibility of silicate perovskite in the lower mantle[J]. Earth and Planetary Science Letters, 2012, 333/334: 181-190.   doi: 10.1016/j.jpgl.2012.03.029
[27] DORFMAN S M, MENG Y, PRAKAPENKA V B, et al.  Effects of Fe-enrichment on the equation of state and stability of (Mg,Fe)SiO3 perovskite[J]. Earth and Planetary Science Letters, 2013, 361(1): 249-257.
[28] KUDOH Y, PREWITT C T, FINGER L W, et al.  Effect of iron on the crystal structure of (Mg,Fe)SiO3 perovskite[J]. Geophysical Research Letters, 1990, 17(10): 1481-1484.   doi: 10.1029/GL017i010p01481
[29] FEI Y, WANG Y, FINGER L W.  Maximum solubility of FeO in (Mg, Fe)SiO3-perovskite as a function of temperature at 26 GPa: implication for FeO content in the lower mantle[J]. Journal of Geophysical Research Solid Earth, 1996, 101(B5): 11525-11530.   doi: 10.1029/96JB00408
[30] LUNDIN S, CATALLI K, J. SANTILLÁN, et al..  Effect of Fe on the equation of state of mantle silicate perovskite over 1 Mbar[J]. Physics of the Earth and Planetary Interiors, 2008, 168(1): 97-102.
[31]

ITO E, YAMADA H. Stability relations of silicate spinels, ilmenites, and perovskites [M]//High Pressure Research in Geophysics. Tokyo: Center for Publication, 1982: 405-419.

[32] MAO H K, HEMLEY R J, FEI Y, et al.  Effect of pressure, temperature, and composition on lattice parameters and density of (Fe,Mg)SiO3-perovskites to 30 GPa[J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B5): -.
[33] WANG Y, WEIDENER D J, LIEBERMANN R C, et al.  P-V-T equation of state of (Mg, Fe)SiO3 perovskite: constraints on composition of the lower mantle[J]. Physics of the Earth and Planetary Interiors, 1996, 83(1): 13-40.
[34] FIQUET G, ANDRAULT D, DEWAELE A, et al.  P-V-T, equation of state of MgSiO3, perovskite[J]. Physics of the Earth & Planetary Interiors, 1998, 105(1/2): 21-31.
[35] TANGE Y, TAKAHASHI E, NISHIHARA Y, et al.  Phase relations in the system MgO-FeO-SiO2 to 50 GPa and 2 000 ℃: an application of experimental techniques using multianvil apparatus with sintered diamond anvils[J]. Journal of Geophysical Research Solid Earth, 2009, 114(B2): 1-14.
[36] ANDRAULT D, BOLFAN-CASANOVA N, GUIGNOT N.  Equation of state of lower mantle (Al,Fe)-MgSiO3 perovskite[J]. Earth and Planetary Science Letters, 2001, 193(3/4): 501-508.
[37] FROST D J, LIEBSKE C, LANGENHORST F, et al.  Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle[J]. Nature, 2004, 428(6981): 409-412.   doi: 10.1038/nature02413
[38] MCCAMMON C A.  The crystal chemistry of ferric iron in Fe0.05Mg0.95SiO3 perovskite as determined by Mössbauer spectroscopy in the temperature range 80–293 K[J]. Physics & Chemistry of Minerals, 1998, 25(4): 292-300.
[39] MCCAMMON C A, LAUTERBACH S, SEIFERT F, et al.  Iron oxidation state in lower mantle mineral assemblages: I. empirical relations derived from high-pressure experiments[J]. Earth and Planetary Science Letters, 2004, 222(2): 435-449.   doi: 10.1016/j.jpgl.2004.03.018
[40] IOTA V, YOO C S, CYNN H.  Quartzlike carbon dioxide: an optically nonlinear extended solid at high pressures and temperatures[J]. Science, 1999, 283(5407): 1510-1513.   doi: 10.1126/science.283.5407.1510
[41] TSCHAUNER O, MAO H K, HEMLEY R J.  New Transformations of CO2 at high pressures and temperatures[J]. Physical Review Letters, 2001, 87(7): 075701-.   doi: 10.1103/PhysRevLett.87.075701
[42] LITASOV K D, GONCHAROV A F, HEMLEY R J.  Crossover from melting to dissociation of CO2 under pressure: implications for the lower mantle[J]. Earth & Planetary Science Letters, 2011, 309(3/4): 318-323.
[43] BOATES B, TEWELDEBERHAN A M, BONEV S A.  Stability of dense liquid carbon dioxide[J]. Proceedings of the National Academy of Sciences, 2012, 109(37): 14808-14812.   doi: 10.1073/pnas.1120243109
[44] TEWELDEBERHAN A M, BOATES B, BONEV S A.  CO2 in the mantle: melting and solid–solid phase boundaries[J]. Earth and Planetary Science Letters, 2013, 373: 228-232.   doi: 10.1016/j.jpgl.2013.05.008
[45] DZIUBEK K F, MARTIN E, DEMETRIO S, et al.  Crystalline polymeric carbon dioxide stable at megabar pressures[J]. Nature Communications, 2018, 9(1): 3148-.   doi: 10.1038/s41467-018-05593-8
[46] HOLLAND T J B, POWELL R.  An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids[J]. Journal of Metamorphic Geology, 2011, 29: 333-383.   doi: 10.1111/j.1525-1314.2010.00923.x
[47] XU W, LITHGOW-BERTELLONI C, STIXRUDE L, et al.  The effect of bulk composition and temperature on mantle seismic structure[J]. Earth and Planetary Science Letters, 2008, 275(1/2): 70-79.
[48] FISCHER R A, CAMPBELL A J, CHIDESTER B A, et al.  Equations of state and phase boundary for stishovite and CaCl2-type SiO2[J]. American Mineralogist, 2018, 103(5): 792-802.   doi: 10.2138/am-2018-6267
[49] NAKAJIMA Y, FROST D J, RUBIE D C.  Ferrous iron partitioning between magnesium silicate perovskite and ferropericlase and the composition of perovskite in the Earth’s lower mantle[J]. Journal of Geophysical Research Solid Earth, 2012, 117: B08201-.
[50] FROST D J, WOOD B J.  Experimental measurements of the fugacity of CO2 and graphite/diamond stability from 35 to 77 kbar at 925 to 1 650 ℃[J]. Geochimica et Cosmochimica Acta, 1997, 61(8): 1565-1574.   doi: 10.1016/S0016-7037(97)00035-5
[51]

WILDING M C, HARTE B, HARRIS J W. Evidence for a deep origin for Sao Luiz diamonds [C]//Fifth International Kimberlite Conference, 1991.

[52] KLEIN-BENDAVID O, WIRTH R, NAVON O.  Micrometer-scale cavities in fibrous and cloudy diamonds: a glance into diamond dissolution events[J]. Earth and Planetary Science Letters, 2007, 264(1/2): 89-103.   doi: 10.1016/j.jpgl.2007.09.004
[53] VAN DER HILST R D, WIDIYANTORO S, ENGDAHL E R.  Evidence for deep mantle circulation from global tomography[J]. Nature, 1997, 386(6625): 578-584.   doi: 10.1038/386578a0
[54] STAGNO V, OJWANG D O, MCCAMMON C A, et al.  The oxidation state of the mantle and the extraction of carbon from Earth’s interior[J]. Nature, 2013, 493(7430): 84-88.   doi: 10.1038/nature11679
[55] HIROSE K, TAKAFUJI N, SATA N, et al.  Phase transition and density of subducted MORB crust in the lower mantle[J]. Earth and Planetary Science Letters, 2005, 237(1/2): 239-251.
[56] HIROSE K, FEI Y, MA Y, et al.  The fate of subducted basaltic crust in the Earth’s lower mantle[J]. Nature, 1999, 397(397): 53-56.