[1]

KERNEN P.Way and methods to insensitive munitions:IM recipes version [C]//Processing of Insensitive Munitions Technology Symposium. Williamsburg: NSWC, 1994.

[2] 韩勇, 鲁斌, 蒋志海, 等.  JO-9159/ECX复合装药的冲击波感度研究[J]. 含能材料, 2008, 16(2): 164-166.   doi: 10.3969/j.issn.1006-9941.2008.02.012
HAN Y, LU B, JIANG Z H, et al.  Shock sensitivity of JO-9159/ECX composite charge[J]. Chinese Journal of Energetic Materials, 2008, 16(2): 164-166.   doi: 10.3969/j.issn.1006-9941.2008.02.012
[3]

NOUGUEZ B.Dual formulation warheads:a mature technology [C]//Processing of Insensitive Munitions Technology Symposium.Williamsburg:NSWC,1996.

[4] 沈飞, 王辉, 罗一鸣.  DNTF基同轴双元装药的爆轰波形及驱动特性[J]. 含能材料, 2018, 26(7): 614-619.   doi: 10.11943/j.issn.1006-9941.2018.07.011
SHEN F, WANG H, LUO Y M.  Detonation wave-shape and driving performance of coaxial binary charge of DNTF-based Aluminized explosives[J]. Energetic Materials, 2018, 26(7): 614-619.   doi: 10.11943/j.issn.1006-9941.2018.07.011
[5]

VITTORIA M, BURGESS W.Sympathetic detonation testing of a dual explosive warhead concept for large diameter warheads [C]//Processing of Insensitive Munitions Technology Symposium. Williamsburg: NSWC, 1994.

[6] 沈飞, 王辉, 罗一鸣.  一种同轴双元组合装药的爆轰波形及驱动特性[J]. 火炸药学报, 2018, 41(6): 588-593.
SHEN F, WANG H, LUO Y M.  Detonation waveform and driving performance of a kind of coaxial binary composite charge[J]. Chinese Journal of Explosives & Propellants, 2018, 41(6): 588-593.
[7] 向梅, 黄毅民, 饶国宁, 等.  复合装药结构隔板实验与数值模拟[J]. 兵工学报, 2013, 34(2): 246-250.
XIANG M, HUANG Y M, RAO G N, et al.  Experimental and numerical simulation study of the shockwave sensitivity of composite charge explosive[J]. Acta Armamentarii, 2013, 34(2): 246-250.
[8] 向梅, 饶国宁, 彭金华.  钝感复合装药结构枪击试验尺寸效应的数值模拟[J]. 火炸药学报, 2010, 33(6): 30-33.   doi: 10.3969/j.issn.1007-7812.2010.06.007
XIANG M, RAO G N, PENG J H.  Numerical simulation on bullet impact test dimensional effect for the composite structure of insensitive ammunition[J]. Chinese Journal of Explosives & Propellants, 2010, 33(6): 30-33.   doi: 10.3969/j.issn.1007-7812.2010.06.007
[9] 尹俊婷, 蔚红建, 栗宝华, 等.  金属加速炸药/高爆热炸药复合装药爆炸特性研究[J]. 火工品, 2015, (3): 33-37.   doi: 10.3969/j.issn.1003-1480.2015.03.010
YIN J T, WEI H J, LI B H, et al.  Explosion characteristics of metal accelerating explosive/ high detonation heat explosive composite charge[J]. Initiators & Pyrotechnics, 2015, (3): 33-37.   doi: 10.3969/j.issn.1003-1480.2015.03.010
[10] 牛余雷, 王晓峰, 余然.  双元复合炸药装药水下爆炸能量输出特性[J]. 含能材料, 2009, 17(4): 415-419.   doi: 10.3969/j.issn.1006-9941.2009.04.010
NIU Y L, WANG X F, YU R.  Characteristics of energy output of underwater explosion for dual explosive charge[J]. Chinese Journal of Energetic Materials, 2009, 17(4): 415-419.   doi: 10.3969/j.issn.1006-9941.2009.04.010
[11] 屈可朋, 沈飞, 王世英, 等.  RDX基PBX炸药在不同应力率下的撞击安全性[J]. 火炸药学报, 2014, 37(6): 40-43.
QU K P, SHEN F, WANG S Y, et al.  Research on impact safety of a RDX-based PBX explosive at different stress rate[J]. Chinese Journal of Explosives & Propellants, 2014, 37(6): 40-43.
[12] 肖玮, 李亮亮, 屈可朋, 等.  某RDX基含Al炸药发射安全性[J]. 含能材料, 2015, 23(1): 62-66.   doi: 10.11943/j.issn.1006-9941.2015.01.013
XIAO W, LI L L, QU K P, et al.  Launch safety of RDX-based aluminized explosive[J]. Chinese Journal of Energetic Materials, 2015, 23(1): 62-66.   doi: 10.11943/j.issn.1006-9941.2015.01.013
[13] 陈鹏万, 丁雁生.  高聚物粘结炸药的力学行为及变形破坏机理[J]. 含能材料, 2000, 8(4): 161-164.   doi: 10.3969/j.issn.1006-9941.2000.04.005
CHEN P W, DING Y S.  Mechanical behaviour and deformation and failure mechanisms of polymer bonded explosives[J]. Chinese Journal of Energetic Materials, 2000, 8(4): 161-164.   doi: 10.3969/j.issn.1006-9941.2000.04.005
[14] 黄亚峰, 田轩, 冯博, 等.  温压炸药爆炸性能实验研究[J]. 爆炸与冲击, 2016, 36(4): 573-576.   doi: 10.11883/1001-1455(2016)04-0573-04
HUANG Y F, TIAN X, FENG B, et al.  Experimental study on explosion performance of thermobaric explosive[J]. Explosion and Shock Waves, 2016, 36(4): 573-576.   doi: 10.11883/1001-1455(2016)04-0573-04
[15] AHMED K M, HOSAM E K, ELBASUNEY S.  Nanoscopic fuel-rich thermobaric formulations: chemical composition optimization and sustained secondary combustion shock wave modulation[J]. Journal of Hazardous Materials, 2016, 301: 492-503.   doi: 10.1016/j.jhazmat.2015.09.019
[16] 张玉磊, 苏健军, 李芝绒, 等.  TNT内爆炸准静态压力特性[J]. 爆炸与冲击, 2018, 38(6): 1429-1434.   doi: 10.11883/bzycj-2017-0170
ZHANG Y L, SU J J, LI Z R, et al.  Quasi-static pressure characteristic of TNT’s internal explosion[J]. Explosion and Shock Waves, 2018, 38(6): 1429-1434.   doi: 10.11883/bzycj-2017-0170
[17] 金朋刚, 郭炜, 王建灵, 等.  密闭条件下TNT的爆炸压力特性[J]. 火炸药学报, 2013, 36(3): 39-41.   doi: 10.3969/j.issn.1007-7812.2013.03.009
JIN P G, GUO W, WANG J L, et al.  Explosion pressure characteristics of TNT under closed condition[J]. Chinese Journal of Explosives & Propellants, 2013, 36(3): 39-41.   doi: 10.3969/j.issn.1007-7812.2013.03.009
[18]

蒋浩征, 俞明义. 导弹技术词典 [M]. 北京: 宇航出版社, 1986: 144–145.

[19]

AMES R G, DROTAR J T, SILBER J, et a1.Quantitative distinction between detonation and after burn energy deposition using pressure-time histories in enclosed explosions [C]//13th International Detonation Symposium. Norfolk Virginia: Office of Naval Research, 2006.

[20]

DAVID P E. Internal blast test to support the Tomahawk and APET programs " munitions survivability in unified operations” [C]//Insensitive Munitions Technology Symposium. Las Vegas, NV, 1996.

[21] 杨雄, 王晓峰, 黄亚峰, 等.  真空环境下铝含量对HMX基炸药爆炸场压力和温度的影响[J]. 火炸药学报, 2017, 40(6): 73-77.
YANG X, WANG X F, HUANG Y F, et al.  Effect of Al content on the explosion fild pressure and temperature of HMX-based explosive in vacuum environment[J]. Chinese Journal of Explosives & Propellants, 2017, 40(6): 73-77.