[1] HOLMQUIST T J, TEMPLETON D W, BISHNOI K D.  Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications[J]. International Journal of Impact Engineering, 2001, 25(3): 211-231.   doi: 10.1016/S0734-743X(00)00046-4
[2] 孙炜海, 鞠桂玲, 杨班权.  平头弹丸侵彻B4C陶瓷/金属复合靶板的数值模拟[J]. 装甲兵工程学院学报, 2014, 28(2): 45-48.
SUN W H, JU G L, YANG B Q.  Numerical simulation on penetration of B4C ceramic/metal composite targets struck by flat-ended projectiles[J]. Journal of Academy of Armored Force Engineering, 2014, 28(2): 45-48.
[3] BACKMAN M E, GOLDSMITH W.  The mechanics of penetration of projectiles into targets[J]. International Journal of Engineering Science, 1978, 16(1): 1-99.   doi: 10.1016/0020-7225(78)90002-2
[4]

钱伟长. 穿甲力学 [M].北京: 高等教育出版社, 1984.

QIAN W C. Penetration mechanics [M]. Beijing: High Education Press, 1984.

[5] CORBETT G G, REID S R, JOHNSON W.  Impact loading of plates and shells by free-flying projectiles: a review[J]. International Journal of Impact Engineering, 1996, 18(2): 141-230.   doi: 10.1016/0734-743X(95)00023-4
[6] FORRESTAL M J, FREW D J, HANCHAK S J, et al.  Penetration of grout and concrete targets with ogive-nose steel projectiles[J]. International Journal of Impact Engineering, 1996, 18(5): 465-476.   doi: 10.1016/0734-743X(95)00048-F
[7] LI Q M, REID S R, WEN H M, et al.  Local impact effects of hard missiles on concrete targets[J]. International Journal of impact engineering, 2005, 32(1): 224-284.   doi: 10.1016/j.ijimpeng.2005.04.005
[8] 陈小伟.  穿甲/侵彻问题的若干工程研究进展[J]. 力学进展, 2009, 39(3): 316-351.   doi: 10.3321/j.issn:1000-0992.2009.03.006
CHEN X W.  Advances in the penetration/perforation of rigid projectiles[J]. Advances in Mechanics, 2009, 39(3): 316-351.   doi: 10.3321/j.issn:1000-0992.2009.03.006
[9] LI Q M, CHEN X W.  Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile[J]. International Journal of Impact Engineering, 2003, 28(1): 93-116.   doi: 10.1016/S0734-743X(02)00037-4
[10] GEBBEKEN N, GREULICH S, PIETZSCH A.  Hugoniot properties for concrete determined by full-scale detonation experiments and flyer-plate-impact tests[J]. International Journal of Impact Engineering, 2006, 32(12): 2017-2031.   doi: 10.1016/j.ijimpeng.2005.08.003
[11]

梁斌. 动能攻坚战斗部对混凝土靶侵爆效应研究 [D].绵阳:中国工程物理研究院, 2009.

LIANG B. Research on invading explosion effect of concrete target by kinetic energy [D]. Mianyang: China Academy of Engineering Physics, 2009.

[12]

黄民荣.刚性弹体对混凝土靶的侵彻与贯穿机理研究 [D].南京:南京理工大学, 2011.

HUANG M R. Penetration and perforation mechanism of rigid projectile into the concrete target [D]. Nanjing: Nanjing University of Science & Technology, 2011.

[13] 邓佳杰, 张先锋, 葛贤坤, 等.  基于局部相互作用理论的侵彻弹头部形状优化及仿真[J]. 爆炸与冲击, 2017, 37(4): 611-620.   doi: 10.11883/1001-1455(2017)04-0611-10
DENG J F, ZHANG X F, GE X K, et al.  Nose-shape optimization and simulation of projectiles penetrating into concrete target based on local interaction theory[J]. Explosion and Shock Waves, 2017, 37(4): 611-620.   doi: 10.11883/1001-1455(2017)04-0611-10
[14] FORRESTAL M J, FREW D J, HICKERSON J P, et al.  Penetration of concrete targets with deceleration-time measurements[J]. International Journal of Impact Engineering, 2003, 28(5): 479-497.   doi: 10.1016/S0734-743X(02)00108-2
[15] 王成, 王万军, 宁建国.  聚能装药对混凝土靶板的侵彻研究[J]. 力学学报, 2015, 47(4): 672-684.
WANG C, WANG W J, NING J G.  Investigation on shaped charge penetrating into concrete targets[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 672-684.
[16] 薛建锋, 沈培辉, 王晓鸣.  弹体斜侵彻混凝土靶的实验研究及其数值模拟[J]. 爆炸与冲击, 2017, 37(3): 536-543.   doi: 10.11883/1001-1455(2017)03-0536-08
XUE J F, SHEN P H, WANG X M.  Experimental study and numerical simulation of projectile obliquely penetrating into concrete target[J]. Explosion and Shock Waves, 2017, 37(3): 536-543.   doi: 10.11883/1001-1455(2017)03-0536-08
[17] KONG X Z, WU H, FANG Q, et al.  Projectile penetration into mortar targets with a broad range of steiking velocities: test and analyses[J]. International of Journal of Impact Engineering, 2017, 106: 18-29.   doi: 10.1016/j.ijimpeng.2017.02.022
[18] GUPTA N K, AITMAN B S, CARGILE J D, et al.  Normalimpact of ogive nosed projectiles on thin plates[J]. International of Journal of Impact Engineering, 2001, 25(7): 641-660.   doi: 10.1016/S0734-743X(01)00003-3
[19] WARREN T L, FOSSUM A F, FREW D J.  Penetration into low-strength (23 MPa) concrete: target characterization andsimulations[J]. International of Journal of Impact Engineering, 2004, 30(5): 477-503.   doi: 10.1016/S0734-743X(03)00092-7
[20] 董军, 邓国强, 杨科之, 等.  弹丸对混凝土薄板的冲击破坏效应[J]. 岩石力学与工程学报, 2005, 24(4): 713-720.   doi: 10.3321/j.issn:1000-6915.2005.04.029
DONG J, DENG G Q, YANG K Z, et al.  Damage effect of thin concrete slabs subjected to projectile impact[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(4): 713-720.   doi: 10.3321/j.issn:1000-6915.2005.04.029
[21] 强洪夫, 范树佳, 陈福振, 等.  基于SPH 方法的聚能射流侵彻混凝土靶板数值模拟[J]. 爆炸与冲击, 2016, 36(4): 516-524.   doi: 10.11883/1001-1455(2016)04-0516-09
QIANG H F, FAN S J, CHEN F Z, et al.  Numerical simulation on penetration of concrete target by shaped charge jet with SPH method[J]. Explosion and Shock Waves, 2016, 36(4): 516-524.   doi: 10.11883/1001-1455(2016)04-0516-09
[22] 张馨予, 吴艳青, 黄风雷.  PBX装药弹体侵彻混凝土薄板的数值模拟[J]. 含能材料, 2018, 26(1): 101-108.
ZHANG X Y, WU Y Q, HUANG F L.  Numerical simulation on the dynamic damage of PBX charges filled in projectiles during penetrating thin concrete targets[J]. Chinese Journal of Energetic Materials, 2018, 26(1): 101-108.
[23] 武海军, 黄风雷, 付跃升, 等.  钢筋混凝土中爆炸破坏效应数值模拟分析[J]. 北京理工大学学报, 2007, 27(3): 200-204.   doi: 10.3969/j.issn.1001-0645.2007.03.004
WU H J, HUANG F L, FU Y S, et al.  Numerical simulation of reinforced concrete breakage under internal blast loading[J]. Transactions of Beijing Institute of Technology, 2007, 27(3): 200-204.   doi: 10.3969/j.issn.1001-0645.2007.03.004
[24] SWEGLE J W, ATTAWAY S W.  On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations[J]. Computational Mechanics, 1995, 17(3): 151-168.   doi: 10.1007/BF00364078
[25] LIBERSKY L D, PETSCHEK A G, CARNEY T C, et al.  High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response[J]. Journal of Computational Physics, 1993, 109(1): 67-75.   doi: 10.1006/jcph.1993.1199
[26] MONAGHAN J J.  Smoothed particle hydrodynamics[J]. Annual Review of Astronomy and Astrophysics, 1992, 30(1): 543-574.   doi: 10.1146/annurev.aa.30.090192.002551
[27]

JOHNSON G R, COOK W. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]// Proceedings of the Seventh International Symposium on Ballistics. The Hague, 1983: 541–547.

[28] QIANG H, WANG K, GAO W.  Numerical simulation of shaped charge jet using multi-phase SPH method[J]. Transactions of Tianjin University, 2008, 14(1): 495-499.
[29]

强洪夫, 孙新亚, 陈福振, 等. 钻地弹侵爆多层混凝土建筑物的SPH 数值模拟 [J/OL]. 爆炸与冲击(2018–06–02) [2018–09–14].http://kns.cnki.net/kcms/detail/51.1148.O3.20180531.1019.034.html.

QIANG H F, SUN X Y, CHEN F Z, et al. Numerical simulation of earth penetrating weapon penetration and explosion multi-layer concrete structures with SPH method [J]. Explosion and Shock Waves (2018–06–02) [2018–09–14]. http://kns.cnki.net/kcms/detail/51.1148.O3.20180531.1019.034.html.

[30] 陈福振, 强洪夫, 高巍然.  气粒两相流传热问题的光滑离散颗粒流体动力学方法数值模拟[J]. 物理学报, 2014, 63(23): 230206-.   doi: 10.7498/aps.63.230206
CHEN F Z, QIANG H F, GAO W R.  Numerical simulation of heat transfer in gas-particle two-phase flow with smoothed discrete particle hydro dynamics[J]. Acta Physica Sinica, 2014, 63(23): 230206-.   doi: 10.7498/aps.63.230206
[31] 强洪夫, 高巍然.  完全变光滑长度SPH法及其实现[J]. 计算物理, 2008, 25(5): 569-575.   doi: 10.3969/j.issn.1001-246X.2008.05.008
QIANG H F, GAO W R.  SPH method with fully variable smoothing lengths and implementation[J]. Chinese Journal of Computational Physics, 2008, 25(5): 569-575.   doi: 10.3969/j.issn.1001-246X.2008.05.008
[32]

强洪夫.光滑例子流体动力学方法及应用 [M]. 北京: 科学出版社, 2017: 246–287.

[33] 金乾坤.  混凝土动态损伤与失效模型[J]. 兵工学报, 2006, 27(1): 10-14.   doi: 10.3321/j.issn:1000-1093.2006.01.003
JIN Q K.  Dynamic damage and failure model for concrete materials[J]. Acta Armamentarii, 2006, 27(1): 10-14.   doi: 10.3321/j.issn:1000-1093.2006.01.003