[1] AVDEEV I, MARTINSEN M, FRANCIS A.  Rate- and temperature-dependent material behavior of a multilayer polymer battery separator[J]. Journal of Materials Engineering and Performance, 2014, 23(1): 315-325.   doi: 10.1007/s11665-013-0743-4
[2] HUANG X S.  Separator technologies for lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2011, 15(4): 649-662.   doi: 10.1007/s10008-010-1264-9
[3] ROTH E P, DOUGHTY D H, PILE D L.  Effects of separator breakdown on abuse response of 18650 Li-ion cells[J]. Journal of Power Sources, 2007, 174(2): 579-583.   doi: 10.1016/j.jpowsour.2007.06.163
[4] SANTHANAGOPALAN S, RAMADASS P, ZHANG J Z.  Analysis of internal short-circuit in a lithium ion cell[J]. Journal of Power Sources, 2009, 194(1): 550-557.   doi: 10.1016/j.jpowsour.2009.05.002
[5] DARCY E.  Screening Li-ion batteries for internal shorts[J]. Journal of Power Sources, 2007, 174(2): 575-578.   doi: 10.1016/j.jpowsour.2007.06.245
[6] SPOTNITZ R M, WEAVER J, YEDUVAKA G, et al.  Simulation of abuse tolerance of lithium-ion battery packs[J]. Journal of Power Sources, 2007, 163(2): 1080-1086.   doi: 10.1016/j.jpowsour.2006.10.013
[7] BÖHNSTEDT W.  Challenges for automotive battery separator development[J]. Journal of Power Sources, 1997, 67(1/2): 299-305.
[8] WANG X H, SHEN W H, HUANG X F, et al.  Estimating the thickness of diffusive solid electrolyte interface[J]. Science China, 2017, 60(6): 064612-.
[9] MA Z S, XIE Z C, WANG Y, et al.  Failure modes of hollow core-shell structural active materials during the lithiation-delithiation process[J]. Journal of Power Sources, 2015, 290: 114-122.   doi: 10.1016/j.jpowsour.2015.05.008
[10] WU H, XIE Z C, WANG Y, et al.  Modeling diffusion-induced stress on two-phase lithiation in lithium-ion batteries[J]. European Journal of Mechanics A, 2018, 71: 320-325.   doi: 10.1016/j.euromechsol.2018.04.005
[11] HU B, MA Z S, LEI W X, et al.  A chemo-mechanical model coupled with thermal effect on the hollow core-shell electrodes in lithium-ion batteries[J]. Theoretical and Applied Mechanics Letters, 2017, 7(4): 199-206.   doi: 10.1016/j.taml.2017.09.001
[12] WU H, XIE Z C, WANG Y, et al.  A constitutive model coupling irradiation with two-phase lithiation for lithium-ion battery electrodes[J]. Philosophical Magazine, 2019, 99(8): 992-1013.   doi: 10.1080/14786435.2019.1569767
[13] ZHANG X W, SAHRAEI E, WANG K.  Deformation and failure characteristics of four types of lithium-ion battery separators[J]. Journal of Power Sources, 2016, 327: 693-701.   doi: 10.1016/j.jpowsour.2016.07.078
[14] HALALAY I C, LUKITSCH M J, BALOGH M P, et al.  Nanoindentation testing of separators for lithium-ion batteries[J]. Journal of Power Sources, 2013, 238: 469-477.   doi: 10.1016/j.jpowsour.2013.04.036
[15] WANG E, WU H P, CHIU C H, et al.  The effect of battery separator properties on thermal ramp, overcharge and short circuiting of rechargeable Li-ion batteries[J]. Journal of the Electrochemical Society, 2019, 166(2): A125-A131.   doi: 10.1149/2.0381902jes
[16] XU J, WANG L B, GUAN J, et al.  Coupled effect of strain rate and solvent on dynamic mechanical behaviors of separators in lithium ion batteries[J]. Materials & Design, 2016, 95: 319-328.
[17] KALNAUS S, WANG Y L, TURNER J A.  Mechanical behavior and failure mechanisms of Li-ion battery separators[J]. Journal of Power Sources, 2017, 348: 255-263.   doi: 10.1016/j.jpowsour.2017.03.003
[18] CHEN J H, HU H J, LI S, et al.  Evolution of mechanical properties of polypropylene separator in liquid electrolytes for lithium-ion batteries[J]. Journal of Applied Polymer Science, 2018, 135(27): 46441-.   doi: 10.1002/app.46441
[19] CANNARELLA J, LIU X Y, LENG C Z, et al.  Mechanical properties of a battery separator under compression and tension[J]. Journal of the Electrochemical Society, 2014, 161(11): F3117-F3122.   doi: 10.1149/2.0191411jes
[20] XU H Y, ZHU M, MARCICKI J, et al.  Mechanical modeling of battery separator based on microstructure image analysis and stochastic characterization[J]. Journal of Power Sources, 2017, 345: 137-145.   doi: 10.1016/j.jpowsour.2017.02.002
[21] WANG L B, YIN S, XU J.  A detailed computational model for cylindrical lithium-ion batteries under mechanical loading: from cell deformation to short-circuit onset[J]. Journal of Power Sources, 2019, 413: 284-292.   doi: 10.1016/j.jpowsour.2018.12.059
[22] CHEN J C, YAN Y D, SUN T, et al.  Deformation and fracture behaviors of microporous polymer separators for lithium ion batteries[J]. RSC Advances, 2014, 4(29): 14904-.   doi: 10.1039/c4ra00983e
[23] DROZDOV A D, DE C CHRISTIANSEN J.  Viscoelasticity and viscoplasticity of semicrystalline polymers: structure-property relations for high-density polyethylene[J]. Computational Materials Science, 2007, 39(4): 729-751.   doi: 10.1016/j.commatsci.2006.09.001
[24] LI X X, WU H Y, WANG Y, et al.  Study on the β to α transformation of PP/POE blends with β-phase nucleating agent during the tensile deformation process[J]. Materials Science and Engineering A, 2010, 527(3): 531-538.   doi: 10.1016/j.msea.2009.08.007
[25] ROZANSKI A, GALESKI A, DEBOWSKA M.  Initiation of cavitation of polypropylene during tensile drawing[J]. Macromolecules, 2011, 44(1): 20-28.   doi: 10.1021/ma1018523
[26] ZUO F, KEUM J K, CHEN X M, et al.  The role of interlamellar chain entanglement in deformation-induced structure changes during uniaxial stretching of isotactic polypropylene[J]. Polymer, 2007, 48(23): 6867-6880.   doi: 10.1016/j.polymer.2007.08.065