[1] DUDLEY J D, HALL H T.  Experimental fusion curves of indium and tin to 105 000 atmospheres[J]. Physical Review, 1960, 118(5): 1211-1216.   doi: 10.1103/PhysRev.118.1211
[2] BARNETT J D, BEAN V E, HALL H T.  X-ray diffraction studies on tin to 100 kilobars[J]. Journal of Applied Physics, 1966, 37(2): 875-877.   doi: 10.1063/1.1708275
[3] DESGRENIERS S, VOHRA Y K, RUOFF A L.  Tin at high pressure: an energy-dispersive X-ray-diffraction study to 120 GPa[J]. Physical Review B, 1989, 39(14): 10359-10361.   doi: 10.1103/PhysRevB.39.10359
[4] LIU M, LIU L G.  Compressions and phase transitions of tin to half a megabar[J]. High Temperatures-High Pressures, 1986, 18: 79-85.
[5]

SERVAS E M. Sound-velocity doppler laser interferometry measurements on tin [C]//Shock Compression of Condensed Matter-2001. Atlanta, GA(USA): American Institute of Physics, 2002, 620: 1200–1203.

[6] CHEONG B H, CHANG K J.  First-principles study of the structural properties of tin under pressure[J]. Physical Review B: Condensed Matter, 1991, 44(9): 4103-4108.   doi: 10.1103/PhysRevB.44.4103
[7] CORKILL J L, GARCA A, COHEN M L.  Erratum: Theoretical study of high-pressure phases of tin[J]. Physical Review B, 1991, 43(11): 9251-9254.   doi: 10.1103/PhysRevB.43.9251
[8] CHRISTENSEN N E, METHFESSEL M.  Density-functional calculations of the structural properties of tin under pressure[J]. Physical Review B, 1993, 48(9): 5797-5807.   doi: 10.1103/PhysRevB.48.5797
[9] RAVELO R, BASKES M.  Equilibrium and thermodynamic properties of grey, white, and liquid tin[J]. Physical Review Letters, 1997, 79(13): 2482-2485.   doi: 10.1103/PhysRevLett.79.2482
[10] BERNARD S, MAILLET J B.  First-principles calculation of the melting curve and hugoniot of tin[J]. Physical Review B, 2002, 66(1): 012103-.   doi: 10.1103/PhysRevB.66.012103
[11] AGUADO A.  First-principles study of elastic properties and pressure-induced phase transitions of Sn: LDA versus GGA results[J]. Physical Review B: Condensed Matter and Materials Physics, 2003, 67(21): 212104-.   doi: 10.1103/PhysRevB.67.212104
[12] YU C, LIU J, LU H, et al.  Ab initio calculation of the properties and pressure induced transition of Sn[J]. Solid State Communications, 2006, 140(11/12): 538-543.
[13] CUI S X, CAI L C, FENG W X, et al.  First-principles study of phase transition of tin and lead under high pressure[J]. Physica Status Solidi, 2008, 245(1): 53-57.   doi: 10.1002/pssb.200743240
[14]

TONKOV E Y, PONYATOVSKY E G. Phase transformations of elements under high pressure [M].Boca Raton, FL: CRC Press, 2005.

[15]

ANDERSON W W, CVERNA F, HIXSON R S, et al. Phase transition and spall behavior in β-tin [C]//AIP Conference Proceedings. American Institute of Physics, 2000: 443–446.

[16]

MABIRE C, HEREIL P L. Shock induced polymorphic transition and melting of tin [C]//Shock Compression of Condensed Matter-1999. New York: American Institute of Physics, 2000, 505(1): 93–96.

[17] STAGER R A, BALCHAN A S, DRICKMER H G.  High-pressure phase transition in metallic tin[J]. Journal of Chemical Physics, 1962, 37(5): 1154-1154.
[18] STROMBERG H D, STEPHENS D R.  Effects of pressure on the electrical resistance of certain metals[J]. Journal of Physics and Chemistry of Solids, 1964, 25(9): 1015-1022.   doi: 10.1016/0022-3697(64)90039-3
[19] MARTIN J E, SMITH P L.  Tin and indium antimonide at very high pressures[J]. British Journal of Applied Physics, 1965, 16(4): 495-500.   doi: 10.1088/0508-3443/16/4/313
[20] VABOYA S N, KENNEDY G C.  Compressibility of 18 metals to 45 kbar[J]. Journal of Physics and Chemistry of Solids, 1970, 31(10): 2329-2345.   doi: 10.1016/0022-3697(70)90247-7
[21] OHTANI A, MIZUKAMI S, KATAYAMA M, et al.  Multi-anvil apparatus for high pressure X-ray diffraction[J]. Japanese Journal of Applied Physics, 1977, 16(10): 1843-1848.   doi: 10.1143/JJAP.16.1843
[22]

MARSH S P. LASL shock hugoniot data [M]. Berkeley: University of California Press, 1980: 141.

[23] CAVALERI M E, PLYMATE T G, STOUT J H.  A pressure volume temperature equation of state for Sn (β) by energy dispersive X-ray diffraction in a heated diamond anvil cell[J]. Journal of Physics and Chemistry of Solids, 1988, 49(8): 945-956.   doi: 10.1016/0022-3697(88)90012-1
[24] RAYNE J A, CHANDRASEKHAR B S.  Elastic constants of β tin from 4.2 K to 300 K[J]. Physical Review, 1960, 120(6): 1658-1663.
[25] KAMIOKA H.  Temperature variations of elastic moduli up to eutectic temperature in tin-bismuth alloys[J]. Japanese Journal of Applied Physics, 1983, 22(12): 1805-1809.
[26] HU J B, ZHOU X M, DAI C D, et al.  Shock-induced bct-bcc transition and melting of tin identified by sound velocity measurements[J]. Journal of Applied Physics, 2008, 104(8): 083520-.   doi: 10.1063/1.3003325
[27] SONG H F, LIU H F, ZHANG G C, et al.  Numerical simulation of wave propagation and phase transition of tin under shock-wave loading[J]. Chinese Physics Letters, 2009, 26(6): 066401-.   doi: 10.1088/0256-307X/26/6/066401
[28]

KIEFER B, DUFFY T, UCHIDA T, et al. Melting of tin at high pressures [R]. APS User Activity Report, 2002.

[29] DAVIS J, HAYES D B.  Isentropic compression experiments on dynamic solidification in tin[J]. Journal of Membrane Science, 2004, 476(1): 20-29.
[30] HAYES D B.  Wave propagation in a condensed medium with N transforming phases: application to solid-I-solid-Ⅱ-liquid bismuth[J]. Journal of Applied Physics, 1975, 46(8): 3438-3443.   doi: 10.1063/1.322065
[31]

COX G A. A Multi-phase equation of state and strength model for tin [C]//Shock Compression of Condensed Matter-2005. Baltimore, Maryland (USA) : American Institute of Physics, 2006, 845(1): 208–211.

[32]

BUY F, VOLTZ C, LLORCA F. Thermodynamically based equation of state for shock wave studies: application to the design of experiments on tin [C]//Shock Compression of Condensed Matter-2005. Baltimore, Maryland (USA): American Institute of Physics, 2006, 845(1): 41–44.

[33] KHISHCHENKO K V.  Equation of state and phase diagram of tin at high pressures[J]. Journal of Physics: Conference Series, 2008, 121(2): 022025-.   doi: 10.1088/1742-6596/121/2/022025
[34]

张林, 李英华, 李雪梅, 等. 锡的βγ两相物态方程 [C]//第六届全国爆炸力学实验技术学术会议, 2010: 301–307.

[35] 种涛, 王桂吉, 谭福利, 等.  磁驱动准等熵压缩下铁的相变[J]. 中国科学:物理学 力学 天文学, 2014, 44(6): 630-636.
CHONG T, WANG G J, TAN F L, et al.  Phase transition of iron under magnetically driven quasi-isentropic compression[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2014, 44(6): 630-636.
[36] WANG G J, LUO B Q, ZHANG X P, et al.  A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading[J]. Review of Scientific Instruments, 2013, 84(1): 015117-.   doi: 10.1063/1.4788935
[37] HALL C A, ASAY J R, KNUGSON M D, et al.  Experimental configuration for isentropic compression of solids using pulsed magnetic loading[J]. Review of Scientific Instruments, 2001, 72(9): 3587-3595.   doi: 10.1063/1.1394178
[38]

STEINBERG D J. Equation of state and strength properties of selected materials [R]. Livermore, California: Lawrence Livermore National Laboratory, 1996.