[1] HALL E O.  The deformation and ageing of mild steel: III discussion of results[J]. Proceedings of the Physical Society Section B, 1951, 64(9): 747-753.   doi: 10.1088/0370-1301/64/9/303
[2] PETCH N J.  The cleavage strength of polycrystals[J]. Journal of the Iron and Steel Institute, 1953, 174: 25-28.
[3] SOLOZHENKO V L, KURAKEVYCH O O, LE GODEC Y.  Creation of nanostuctures by extreme conditions: high-pressure synthesis of ultrahard nanocrystalline cubic boron nitride[J]. Advanced Materials, 2012, 24(12): 1540-1544.   doi: 10.1002/adma.201104361
[4] LIU G, KOU Z, YAN X, et al.  Submicron cubic boron nitride as hard as diamond[J]. Applied Physics Letters, 2015, 106(12): 121901-.   doi: 10.1063/1.4915253
[5] TIAN Y, XU B, YU D, et al.  Ultrahard nanotwinned cubic boron nitride[J]. Nature, 2013, 493(7432): 385-388.   doi: 10.1038/nature11728
[6] 徐波, 田永君.  纳米孪晶超硬材料的高压合成[J]. 物理学报, 2017, 66(3): 036201-.
XU B, TIAN Y J.  High pressure synthesis of nanotwinned ultrahard materials[J]. Acta Physica Sinica, 2017, 66(3): 036201-.
[7] IRIFUNE T, KURIO A, SAKAMOTO S, et al.  Ultrahard polycrystalline diamond from graphite[J]. Nature, 2003, 421(6923): 599-600.
[8] 王海阔, 张相法, 位星, 等.  直接转化法合成大尺寸纯相多晶金刚石[J]. 金刚石与磨料磨具工程, 2018, 38(1): 1-6.
WANG H K, ZHANG X F, WEI X, et al.  Synthesizing bulk polycrystalline diamond by method of direct phase transition[J]. Diamond & Abrasives Engineering, 2018, 38(1): 1-6.
[9] HUANG Q, YU D, XU B, et al.  Nanotwinned diamond with unprecedented hardness and stability[J]. Nature, 2014, 510(7504): 250-.   doi: 10.1038/nature13381
[10] EHRE D, GUTMANAS E Y, CHAIM R.  Densification of nanocrystalline MgO ceramics by hot-pressing[J]. Journal of the European Ceramic Society, 2005, 25(16): 3579-3585.   doi: 10.1016/j.jeurceramsoc.2004.09.023
[11] TANG F, HAGIWARA M, SCHOENUNG J M.  Formation of coarse-grained inter-particle regions during hot isostatic pressing of nanocrystalline powder[J]. Scripta Materialia, 2005, 53(6): 619-624.   doi: 10.1016/j.scriptamat.2005.05.034
[12] BINNER J, ANNAPOORANI K, PAUL A, et al.  Dense nanostructured zirconia by two stage conventional/hybrid microwave sintering[J]. Journal of the European Ceramic Society, 2008, 28(5): 973-977.   doi: 10.1016/j.jeurceramsoc.2007.09.002
[13] DAHL P, KAUS I, ZHAO Z, et al.  Densification and properties of zirconia prepared by three different sintering techniques[J]. Ceramics International, 2007, 33(8): 1603-1610.   doi: 10.1016/j.ceramint.2006.07.005
[14] SALAMON D, KALOUSEK R, MACA K, et al.  Rapid grain growth in 3Y-TZP nanoceramics by pressure-assisted and pressure-less SPS[J]. Journal of the American Ceramic Society, 2015, 98(12): 3706-3712.   doi: 10.1111/jace.13837
[15] MAZAHERI M, ZAHEDI A M, HEJAZI M M.  Processing of nanocrystalline 8 mol% yttria-stabilized zirconia by conventional, microwave-assisted and two-step sintering[J]. Materials Science and Engineering A, 2008, 492(1/2): 261-267.
[16] ZHANG L, WANG Y, LV J, et al.  Erratum: materials discovery at high pressures[J]. Nature Reviews Materials, 2017, 2(4): 17005-.   doi: 10.1038/natrevmats.2017.5
[17] YAVETSKIY R P, BAUMER V N, DANYLENKO M I, et al.  Transformation-assisted consolidation of Y2O3: Eu3+ nanospheres as a concept to optical nanograined ceramics[J]. Ceramics International, 2014, 40(2): 3561-3569.   doi: 10.1016/j.ceramint.2013.09.072
[18] WOLLMERSHAUSER J A, FEIGELSON B N, GORZKOWSKI E P, et al.  An extended hardness limit in bulk nanoceramics[J]. Acta Materialia, 2014, 69(5): 9-16.
[19] KEAR B H, COLAIZZI J, MAYO W E, et al.  On the processing of nanocrystalline and nanocomposite ceramics[J]. Scripta Materialia, 2001, 44(8/9): 2065-2068.
[20] LIAO S C, COLAIZZI J, CHEN Y, et al.  Refinement of nanoscale grain structure in bulk titania via a transformation-assisted consolidation (TAC) method[J]. Journal of the American Ceramic Society, 2000, 83(9): 2163-2169.
[21] LIAO S C, CHEN Y J, MAYO W E, et al.  Transformation-assisted consolidation of bulk nanocrystalline TiO2[J]. Nanostructured Materials, 1999, 11(4): 553-557.   doi: 10.1016/S0965-9773(99)00344-X
[22] LIAO S C, PAE K D, MAYO W E.  Retention of nanoscale grain size in bulk sintered materials via a pressure-induced phase transformation[J]. Nanostructured Materials, 1997, 8(6): 645-656.   doi: 10.1016/S0965-9773(97)00227-4
[23] LIAO S C, PAE K D, MAYO W E.  High pressure and low temperature sintering of bulk nanocrystalline TiO2[J]. Materials Science and Engineering A, 1995, 204(1/2): 152-159.
[24] DENRY I, KELLY J R.  State of the art of zirconia for dental applications[J]. Dental Materials, 2008, 24(3): 299-307.   doi: 10.1016/j.dental.2007.05.007
[25] RÜHLE M.  Microscopy of structural ceramics[J]. Advanced Materials, 1997, 9(3): 195-217.   doi: 10.1002/adma.19970090304
[26] YASHIMA M, HIROSE T, KAKIHANA M, et al.  Size and charge effects of dopant M on the unit-cell parameters of monoclinic zirconia solid solutions Zr0.98M0.02O2-δ (M= Ce, La, Nd, Sm, Y, Er, Yb, Sc, Mg, Ca)[J]. Journal of the American Ceramic Society, 1997, 80(1): 171-175.   doi: 10.1111/j.1151-2916.1997.tb02806.x
[27] DENRY I, KELLY J R.  Emerging ceramic-based materials for dentistry[J]. Journal of Dental Research, 2014, 93(12): 1235-1242.   doi: 10.1177/0022034514553627
[28] PORTER D L, HEUER A H.  Mechanisms of toughening partially stabilized zirconia (PSZ)[J]. Journal of the American Ceramic Society, 1977, 60(3/4): 183-184.
[29] WHITNEY E D.  Effect of pressure on monoclinic-tetragonal transition of zirconia: thermodynamics[J]. Journal of the American Ceramic Society, 1962, 45(12): 612-613.   doi: 10.1111/jace.1962.45.issue-12
[30] WHITNEY E D.  Electrical resistivity and diffusionless phase transformations of zirconia at high temperatures and ultrahigh pressures[J]. Journal of the Electrochemical Society, 1965, 112(1): 91-94.   doi: 10.1149/1.2423476
[31] VAHLDIEK F W, ROBINSON L B, LYNCH C T.  Tetragonal zirconium oxide prepared under high pressure[J]. Science, 1963, 142(3595): 1059-1060.   doi: 10.1126/science.142.3595.1059
[32] KULCINSKI G L.  High-pressure induced phase transition in ZrO2[J]. Journal of the American Ceramic Society, 1968, 51(10): 582-583.   doi: 10.1111/jace.1968.51.issue-10
[33] ALZYAB B, PERRY C H, INGEL R P.  High-pressure phase transitions in zirconia and yttria-doped zirconia[J]. Journal of the American Ceramic Society, 1987, 70(10): 760-765.   doi: 10.1111/jace.1987.70.issue-10
[34] RHODES W H.  Agglomerate and particle size effects on sintering yttria-stabilized zirconia[J]. Journal of the American Ceramic Society, 1981, 64(1): 19-22.   doi: 10.1111/jace.1981.64.issue-1
[35] MAGLIA F, TREDICI I G, ANSELMI-TAMBURINI U.  Densification and properties of bulk nanocrystalline functional ceramics with grain size below 50 nm[J]. Journal of the European Ceramic Society, 2013, 33(6): 1045-1066.   doi: 10.1016/j.jeurceramsoc.2012.12.004
[36] 王海阔, 任瑛, 贺端威, 等.  六面顶压机立方压腔内压强的定量测量及受力分析[J]. 物理学报, 2017, 66(9): 090702-.
WANG H K, REN Y, HE D W, et al.  Force analysis and pressure quantitative measurement for the high pressure cubic cell[J]. Acta Physica Sinica, 2017, 66(9): 090702-.
[37] ANDERSSON G, SUNDQVIST B, BÄCKSTRÖM G.  A high-pressure cell for electrical resistance measurements at hydrostatic pressures up to 8 GPa: results for Bi, Ba, Ni, and Si[J]. Journal of Applied Physics, 1989, 65(10): 3943-3950.   doi: 10.1063/1.343360
[38] 王海阔, 贺端威, 许超, 等.  基于国产铰链式六面顶压机的大腔体静高压技术研究进展[J]. 高压物理学报, 2013, 27(5): 633-661.
WANG H K, HE D W, XU C, et al.  Development of large volume-high static pressure techniques based on the hinge-type cubic presses[J]. Chinese Journal of High Pressure Physics, 2013, 27(5): 633-661.
[39] 陈晓芳, 贺端威, 王福龙, 等.  基于铰链式六面顶压机的二级6-8模超高压大腔体内置加热元件的设计与温度标定[J]. 高压物理学报, 2009, 23(2): 98-104.   doi: 10.3969/j.issn.1000-5773.2009.02.004
CHEN X F, HE D W, WANG F L, et al.  Design and temperature calibration for heater cell of split-sphere high pressure apparatus based on the hinge-type cubic-anvil Press[J]. Chinese Journal of High Pressure Physics, 2009, 23(2): 98-104.   doi: 10.3969/j.issn.1000-5773.2009.02.004
[40] TORAYA H, YOSHIMURA M, SOMIYA S.  Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction[J]. Journal of the American Ceramic Society, 1984, 67(6): C-119-C-121.
[41] KROGSTAD J A, LEPPLE M, GAO Y, et al.  Effect of yttria content on the zirconia unit cell parameters[J]. Journal of the American Ceramic Society, 2011, 94(12): 4548-4555.   doi: 10.1111/j.1551-2916.2011.04862.x
[42] IGAWA N, ISHII Y, NAGASAKI T, et al.  Crystal structure of metastable tetragonal zirconia by neutron powder diffraction study[J]. Journal of the American Ceramic Society, 1993, 76(10): 2673-2676.   doi: 10.1111/jace.1993.76.issue-10
[43] MICHEL D, MAZEROLLES L, JORBA M P Y.  Fracture of metastable tetragonal zirconia crystals[J]. Journal of Materials Science, 1983, 18(9): 2618-2628.   doi: 10.1007/BF00547578