[1] FRASER D.  Bursting bacteria by release of gas pressure[J]. Nature, 1951, 167: 33-34.
[2] HU W F, ZHOU L Y, XU Z Z, et al.  Enzyme inactivation in food processing using high pressure carbon dioxide technology[J]. Critical Reviews of Food Science and Nutrition, 2013, 53(2): 145-161.   doi: 10.1080/10408398.2010.526258
[3] ZHOU L Y, BI X F, XU Z H, et al.  Effects of high-pressure CO2 processing on flavor, texture, and color of foods[J]. Critical Reviews of Food Science and Nutrition, 2015, 55(6): 750-768.   doi: 10.1080/10408398.2012.677871
[4] 刘书成, 郭明慧, 刘媛, 等.  高密度CO2杀菌和钝酶及其在食品加工中应用的研究进展[J]. 广东海洋大学学报, 2016, 36(4): 101-116.   doi: 10.3969/j.issn.1673-9159.2016.04.017
LIU S C, GUO M H, LIU Y, et al.  Review on inactivation of microorganisms and enzyme by dense phase carbon dioxide and the application[J]. Journal of Guangdong Ocean University, 2016, 36(4): 101-116.   doi: 10.3969/j.issn.1673-9159.2016.04.017
[5] FERRENTINO G, SPILIMBERGO S.  High pressure carbon dioxide pasteurization of solid foods: current knowledge and future outlooks[J]. Trends in Food Science and Technology, 2011, 22(8): 427-441.   doi: 10.1016/j.jpgs.2011.04.009
[6] BALABAN M O, DUONG T.  Dense phase carbon dioxide research: current focus and directions[J]. Agriculture and Agricultural Science Procedia, 2014, 2: 2-9.   doi: 10.1016/j.aaspro.2014.11.002
[7] 陈亚励, 屈小娟, 郭明慧, 等.  高密度CO2在肉制品和水产品加工中的应用[J]. 现代食品科技, 2014, 30(9): 304-311.
CHEN Y L, QU X J, GUO M H, et al.  Application of dense-phase carbon dioxide in the processing of meat and aquatic products[J]. Modern Food Science and Technology, 2014, 30(9): 304-311.
[8] RAO W L, LI X, WANG Z Y, et al.  Dense phase carbon dioxide combined with mild heating induced myosin denaturation, texture improvement and gel properties of sausage[J]. Journal of Food Process Engineering, 2017, 40(2): e12404-.   doi: 10.1111/jfpe.2017.40.issue-2
[9] FERNANDES-SILVA S, MOREIRA-SILVA J, SILVA T H, et al.  Porous hydrogels from shark skin collagen crosslinked under dense carbon dioxide atmosphere[J]. Macromolecular Bioscience, 2013, 13(11): 1621-1631.   doi: 10.1002/mabi.201300228
[10] FLOREN M L, SPILIMBERGO S, MOTTA A, et al.  Carbon dioxide induced silk protein gelation for biomedical applications[J]. Biomacromolecules, 2012, 13(7): 2060-2072.   doi: 10.1021/bm300450a
[11] 曲亚琳, 张德权, 饶伟丽, 等.  高密度CO2对羊肉糜凝胶特性的影响[J]. 核农学报, 2010, 24(6): 1226-1231.
QU Y L, ZHANG D Q, RAO W L, et al.  Influence of dense phase CO2 on gel properties of minced mutton[J]. Journal of Nuclear Agricultural Sciences, 2010, 24(6): 1226-1231.
[12] 屈小娟, 刘书成, 吉宏武, 等.  高密度CO2诱导制备虾糜凝胶的特性[J]. 农业工程学报, 2012, 28(20): 282-287.
QU X J, LIU S C, JI H W, et al.  Gel properties of shrimp surimi induced by dense phase carbon dioxide[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(20): 282-287.
[13] 刘书成, 郭明慧, 邓倩琳, 等.  高密度CO2处理虾肌球蛋白形成凝胶的临界浓度与凝胶强度[J]. 农业工程学报, 2017, 33(7): 295-301.
LIU S C, GUO M H, DENG Q L, et al.  Least gelation concentration and gel strength of myosin from Litopenaeus vannamei induced by dense phase carbon dioxide[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(7): 295-301.
[14] LIU S C, LIU Y, LUO S, et al.  Molecular dynamics simulation of the interaction between dense-phase carbon dioxide and the myosin heavy chain[J]. Journal of CO2 Utilization, 2017, 21: 270-279.   doi: 10.1016/j.jcou.2017.07.025
[15] CHAIX E, GUILLAUME C, GUILLARD V.  Oxygen and carbon dioxide solubility and diffusivity in solid food matrices: a review of past and current knowledge[J]. Comprehensive Reviews in Food Science and Food Safety, 2014, 13(3): 261-286.   doi: 10.1111/crf3.2014.13.issue-3
[16] CHAIX E, GUILLAUME C, GONTARD N, et al.  Diffusivity and solubility of CO2 in dense solid food products[J]. Journal of Food Engineering, 2015, 166: 1-9.   doi: 10.1016/j.jfoodeng.2015.05.023
[17] 任广跃, 张伟, 张乐道, 等.  多孔介质常压冷冻干燥质热耦合传递数值模拟[J]. 农业机械学报, 2016, 47(3): 214-220.
REN G Y, ZHANG W, ZHANG L D, et al.  Numerical simulation of mass and heat transfer of porous media during atmospheric freeze drying[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3): 214-220.
[18] CHANDRASEKARAN S, RAMANATHAN S, BASAK T.  Microwave food processing—a review[J]. Food Research International, 2013, 52(1): 243-261.   doi: 10.1016/j.foodres.2013.02.033

National Institute of Standards and Technology (NIST) [DB/OL]. [2018–11–15]. https://webbook.nist.gov/chemistry/fluid/

[20] 周尚文, 王红岩, 薛华庆, 等.  页岩过剩吸附质量与绝对吸附质量的差异及页岩气储量计算新方法[J]. 天然气工业, 2016, 36(1): 12-20.
ZHOU S W, WANG H Y, XUE H Q, et al.  Difference between excess and absolute adsorption capacity of shale and a new shale gas reserve calculation method[J]. Natural Gas Industry, 2016, 36(1): 12-20.
[21] PINI R, OTTIGER S, BURLINI L, et al.  Sorption of carbon dioxide, methane and nitrogen in dry coals at high pressure and moderate temperature[J]. International Journal of Greenhouse Gas Control, 2010, 4(1): 90-101.   doi: 10.1016/j.ijggc.2009.10.019
[22] TANG X, RIPEPI N.  High pressure supercritical carbon dioxide adsorption in coal: adsorption model and thermodynamic characteristics[J]. Journal of CO2 Utilization, 2017, 18: 189-197.   doi: 10.1016/j.jcou.2017.01.011
[23] 李全中, 倪小明, 王延斌, 等.  超临界状态下煤岩吸附/解吸二氧化碳的实验[J]. 煤田地质与勘探, 2014, 42(3): 36-39.   doi: 10.3969/j.issn.1001-1986.2014.03.008
LI Q Z, NI X M, WANG Y B, et al.  The experimental study on the adsorption/desorption of carbon dioxide in the coal under supercritical condition[J]. Coal Geology & Exploration, 2014, 42(3): 36-39.   doi: 10.3969/j.issn.1001-1986.2014.03.008
[24] 刘圣鑫, 钟建华, 马寅生, 等.  页岩中气体的超临界等温吸附研究[J]. 煤田地质与勘探, 2015, 43(3): 45-50.   doi: 10.3969/j.issn.1001-1986.2015.03.009
LIU S X, ZHONG J H, MA Y S, et al.  Super-critical isothermal adsorption of gas in shale[J]. Coal Geology & Exploration, 2015, 43(3): 45-50.   doi: 10.3969/j.issn.1001-1986.2015.03.009
[25] GENSTERBLUM Y, HEMERT P V, BILLEMONT P, et al.  European inter-laboratory comparison of high pressure CO2 sorption isotherms II: natural coals[J]. International Journal of Coal Geology, 2010, 84(2): 115-124.   doi: 10.1016/j.coal.2010.08.013

张帆, 刘香禺, 李相臣, 等. 一种精确计算甲烷在页岩上真实吸附质量的方法: CN201610482070.4 [P]. 2016.

[27] 杨李慧, 郑伟中, 孙伟振, 等.  超临界CO2在聚氨酯体系中溶解扩散行为的分子动力学模拟研究[J]. 石油化工, 2018, 47(1): 1-7.   doi: 10.12053/j.issn.1008-2565.2018.01.001
YANG L H, ZHENG W Z, SUN W Z, et al.  Molecular dynamics simulation to investigate the solubility and diffusion of supercritical CO2 in polyurethane systems[J]. Petrochemical Technology, 2018, 47(1): 1-7.   doi: 10.12053/j.issn.1008-2565.2018.01.001
[28] LI, M S, HUANG X Y, LIU H S, et al.  Solubility prediction of supercritical carbon dioxide in 10 polymers using radial basis function artificial neural network based on chaotic self-adaptive particle swarm optimization and K-harmonic means[J]. RSC Advances, 2015, 5(56): 45520-45527.   doi: 10.1039/C5RA07129A
[29] 李武广, 杨胜来, 陈峰, 等.  温度对页岩吸附解吸的敏感性研究[J]. 矿物岩石, 2012, 32(2): 115-120.   doi: 10.3969/j.issn.1001-6872.2012.02.015
LI W G, YANG S L, CHEN F, et al.  The sensitivity study of shale gas adsorption and desorption with rising reservoir temperature[J]. Journal of Mineral Petro, 2012, 32(2): 115-120.   doi: 10.3969/j.issn.1001-6872.2012.02.015
[30] ROSS D J K, BUSTIN R M.  Shale gas potential of the Lower Jurassic Gordondale Member, northeastern British Columbia, Canada[J]. Bulletin of Canadian Petroleum Geology, 2007, 55(1): 51-75.   doi: 10.2113/gscpgbull.55.1.51
[31] 周理, 李明, 周亚平.  超临界甲烷在高表面活性炭上的吸附测量及其理论分析[J]. 中国科学(B辑), 2000, 30(1): 49-56.
ZHOU L, LI M, ZHOU Y P.  Adsorption measurement and theoretical analysis of supercritical methane on high surface activated carbon[J]. Science in China (Series B), 2000, 30(1): 49-56.
[32] KANEKO K, MURATA K.  An analytical method of micropore filling of a supercritical gas[J]. Adsorption-journal of the International Adsorption Society, 1997, 3(3): 197-208.   doi: 10.1007/BF01650131