[1] 高为, 易同生, 金军, 等.  黔西地区煤样孔隙综合分形特征及对孔渗性的影响[J]. 煤炭学报, 2017, 42(5): 1258-1265.
GAO W, YI T S, JIN J, et al.  Pore integrated fractal characteristics of coal sample in western Guizhou and its impact to porosity and permeability[J]. Journal of China Coal Society, 2017, 42(5): 1258-1265.
[2] 秦勇, 邱爱慈, 张永民.  高聚能重复强脉冲波煤储层增渗新技术试验与探索[J]. 煤炭科学技术, 2014, 42(6): 1-7.
QIN Y, QIU A C, ZHANG Y M.  Experiment and discovery on permeability improved technology of coal reservoir based on repeated strong pulse waves of high energy accumulation[J]. Coal Science and Technology, 2014, 42(6): 1-7.
[3] WEI G Y, SHAN Z Y, ZHANG Z M.  Research on hydraulic slotting technology controlling coal-gas outbursts[J]. Journal of Coal Science and Engineering, 2008, 14(1): 67-72.   doi: 10.1007/s12404-008-0014-4
[4] 姜永东, 李业, 崔悦震, 等.  声场作用下煤储层渗透性试验研究[J]. 煤炭学报, 2017, 42(S1): 154-159.
JIANG Y D, LI Y, CUI Y Z, et al.  Experimental study on characteristics of coal reservoir permeability under acoustic wave[J]. Journal of China Coal Society, 2017, 42(S1): 154-159.
[5] 赵丽娟, 秦勇.  超声波作用对改善煤储层渗透性的试验分析[J]. 天然气地球科学, 2014, 25(5): 747-752.
ZHAO L J, QIN Y.  Experiment on improving the permeability of coal reservoir under ultrasound[J]. Natural Gas Geoscience, 2014, 25(5): 747-752.
[6] FORRESTAL M J, FREW D J, HANCHAK S J, et al.  Penetration of grout and concrete targets with ogive-nose steel projectiles[J]. International Journal of Impacting Engineering, 1996, 18(5): 465-476.   doi: 10.1016/0734-743X(95)00048-F
[7] 穆朝民, 王海露, 黄文尧, 等.  高瓦斯低透气性煤体定向聚能爆破增透机制[J]. 岩土力学, 2013, 34(9): 2496-2500.
MU C M, WANG H L, HUANG W Y, et al.  Increasing permeability mechanism using directional cumulative blasting in coal seams with high concentration of gas and low permeability[J]. Rock and Siol Mechanics, 2013, 34(9): 2496-2500.
[8] 李恒乐, 秦勇, 张永民, 等.  重复脉冲强冲击波对肥煤结构影响的实验研究[J]. 煤炭学报, 2015, 40(4): 915-921.
LI H L, QIN Y, ZHANG Y M, et al.  Experimental study on the effect of strong repetitive pulse shockwave on the pore structure of fat coal[J]. Journal of China Coal Society, 2015, 40(4): 915-921.
[9] CAI Y D, LIU D M, PAN Z J, et al.  Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China[J]. Fuel, 2013, 103: 258-268.   doi: 10.1016/j.fuel.2012.06.055
[10]

MANDELBROT B B. The fractal geometry of nature [M]. San Francisco: Freeman, 1982: 35.

[11] BIRD N, DÍAZ M C, SAA A, et al.  Fractal and multifractal analysis of pore-scale images of soil[J]. Journal of Hydrology, 2006, 322(1/2/3/4): 211-219.
[12] DATHE A, EINS S, NIEMEYER J, et al.  The surface fractal dimension of the soil-pore interface as measured by image analysis[J]. Geoderma, 2001, 103(1/2): 203-229.
[13] HUANG S J, YU Y C, LEE T Y, et al.  Correlations and characterization of porous solids by fractal dimension and porosity[J]. Physica A: Statistical Mechanics and Its Applications, 1999, 274(3/4): 419-432.
[14] HILDGEN P, NEKKA F, HILDGEN F, et al.  Macroporosity measurement by fractal analysis[J]. Physica A: Statistical Mechanics and Its Applications, 1997, 234(3/4): 593-603.
[15] YANG F, NING Z F, LIU H Q.  Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China[J]. Fuel, 2014, 115: 378-384.   doi: 10.1016/j.fuel.2013.07.040
[16] LIU X J, XIONG J, LIANG L X.  Investigation of pore structure and fractal characteristics of organic-rich Yanchang formation shale in central China by nitrogen adsorption/desorption analysis[J]. Journal of Natural Gas Science and Engineering, 2015, 22(1): 62-72.
[17] 朱汉卿, 贾爱林, 位云生, 等.  蜀南地区五峰-龙马溪组页岩微观孔隙结构及分形特[J]. 科学技术与工程, 2018, 18(10): 12-19.   doi: 10.3969/j.issn.1671-1815.2018.10.003
ZHU H Q, JIA A L, WEI Y S, et al.  Microscopic pore structure and fractal characteristics of Wufeng-Longmaxi shale, south Sichuan[J]. Science Technology and Engineering, 2018, 18(10): 12-19.   doi: 10.3969/j.issn.1671-1815.2018.10.003
[18] GARBACZ J K.  Fractal description of partially mobile single gas adsorption on energetically homogeneous solid adsorbent[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 143(1): 95-101.
[19] LEE G J, PYUN S Ⅰ, RHEE C K.  Characterization of geometric and structural properties of pore surfaces of reactivated microporous carbons based upon image analysis and gas adsorption[J]. Microporous and Mesoporous Materials, 2006, 93(1/2/3): 217-225.
[20] YAO Y B, LIU D M, TANG D Z, et al.  Fractal characterization of adsorption-pores of coals from North China: an investigation on CH4 adsorption capacity of coals[J]. International Journal of Coal Geology, 2008, 73(1): 27-42.   doi: 10.1016/j.coal.2007.07.003
[21] XU L J, ZHANG D J, XIAN X F.  Fractal dimensions of coals and cokes[J]. Journal of Colloid and Interface Science, 1997, 190(2): 357-359.   doi: 10.1006/jcis.1997.4885
[22] 宋昱, 姜波, 李凤丽, 等.  低-中煤级构造煤纳米孔分形模型适用性及分形特征[J]. 地球科学, 2018, 43(5): 1611-1622.
SONG Y, JIANG B, LI F L, et al.  Applicability of fractal models and nanopores’ fractal characteristics for low-middle rank tectonic deformed coals[J]. Earth Science, 2018, 43(5): 1611-1622.
[23] 王登科, 刘淑敏, 魏建平, 等.  冲击载荷作用下煤的破坏特性试验研究[J]. 采矿与安全工程学报, 2017, 34(3): 594-600.
WANG D K, LIU S M, WEI J P, et al.  The failure characteristics of coal under impact load in laboratory[J]. Journal of Mining & Safety Engineering, 2017, 34(3): 594-600.
[24] 刘晓辉, 张茹, 刘建锋.  不同应变率下煤岩冲击动力试验研究[J]. 煤炭学报, 2012, 37(9): 1528-1534.
LIU X H, ZHANG R, LIU J F.  Dynamic test study of coal rock under different strain rates[J]. Journal of China Coal Society, 2012, 37(9): 1528-1534.
[25]

XODOT B B. 煤与瓦斯突出 [M]. 宋世钊, 王佑安, 译. 北京: 中国工业出版社, 1966: 310–318.

[26] YUAN J, TAKEDA N, WAAS A M.  A note on data processing in the split Hopkinson pressure bar tests[J]. Experimental Techniques, 1998, 22(5): 21-24.   doi: 10.1111/j.1747-1567.1998.tb02317.x
[27] SHAN R L, JIANG Y S, LI B Q.  Obtaining dynamic complete stress-strain curves for rock using the split Hopkinson pressure bar technique[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(6): 983-992.   doi: 10.1016/S1365-1609(00)00031-9
[28] 陈俊宇, 裴向军, 杜瑞锋, 等.  冲击载荷作用下砂岩的动力学特性及能耗规律[J]. 科学技术与工程, 2019, 19(31): 304-310.   doi: 10.3969/j.issn.1671-1815.2019.31.045
CHEN J Y, PEI X J, DU R F, et al.  Dynamic characteristics and energy consumption of sandstone under impact loading[J]. Science Technology and Engineering, 2019, 19(31): 304-310.   doi: 10.3969/j.issn.1671-1815.2019.31.045
[29] KOLSKY H.  An investigation of the mechanical properties of materials at very high rates of loading[J]. Proceedings of the Physical Society (Section B), 1949, 62: 676-700.   doi: 10.1088/0370-1301/62/11/302
[30] LUNDBERG B.  A split Hopkinson bar study of energy absorption in dynamic rock fragmentation[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1976, 13(6): 187-197.
[31] 赵迪斐, 郭英海, WANG G, 等.  基于分形建模的高煤级煤孔隙结构特征量化表征-以阳泉矿区山西组煤样为例[J]. 东北石油大学学报, 2019, 43(3): 53-67.   doi: 10.3969/j.issn.2095-4107.2019.03.006
ZHAO D F, GUO Y H, WANG G, et al.  Quantitative characterization of pore structure characteristics of high quality coal based on fractal modeling: taking coal samples from Shanxi Formation in Yangquan Mining Area as an example[J]. Journal of Northeast Petroleum University, 2019, 43(3): 53-67.   doi: 10.3969/j.issn.2095-4107.2019.03.006
[32] RIGBY S P.  Predicting surface diffusivities of molecules from equilibrium adsorption isotherms[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 262(1/2/3): 139-149.
[33] 杨峰, 宁正福, 张世栋, 等.  基于氮气吸附实验的页岩孔隙结构表征[J]. 天然气工业, 2013, 33(4): 135-140.   doi: 10.3787/j.issn.1000-0976.2013.04.025
YANG F, NING Z F, ZHANG S D, et al.  Characterization of pore structures in shales through nitrogen adsorption experiment[J]. Natural Gas Industry, 2013, 33(4): 135-140.   doi: 10.3787/j.issn.1000-0976.2013.04.025
[34]

吉小峰. 煤中纳米孔隙发育特征及其对气体运移的控制机理研究 [D]. 焦作: 河南理工大学, 2018.

JI X F. Development characteristics of nanopores in coal and its controlling mechanism on gas migration [D]. Jiaozuo: Henan Polytechnic University, 2018.

[35] YAO Y B, LIU D M, TANG D Z, et al.  Fractal characterization of seepage-pores of coals from China: an investigation on permeability of coals[J]. Computers & Geosciences, 2009, 35(6): 1159-1166.
[36] 宋晓夏, 唐跃刚, 李伟, 等.  中梁山南矿构造煤吸附孔分形特征[J]. 煤炭学报, 2013, 38(1): 134-139.
SONG X X, TANG Y G, LI W, et al.  Fractal characteristics of adsorption pores of tectonic coal from Zhongliangshan southern coalmine[J]. Journal of China Coal Society, 2013, 38(1): 134-139.
[37] 林海飞, 刘静波, 严敏, 等.  CO2/CH4在煤储层中扩散规律的分子动力学模型[J]. 中国安全生产科学技术, 2017, 13(1): 84-89.
LIN H F, LIU J B, YAN M, et al.  Molecular dynamics simulation on diffusion rules of CO2/CH4 in coal reservoir[J]. Journal of Safety Science and Technology, 2017, 13(1): 84-89.
[38] 董怡静, 韩雨桢, 候泉林, 等.  煤变形产气的力化学机理探讨[J]. 煤炭学报, 2017, 42(4): 942-949.
DONG Y J, HAN Y Z, HOU Q L, et al.  Mechanochemistry mechanism of gas generation during coal deformation[J]. Journal of China Coal Society, 2017, 42(4): 942-949.
[39] 刘运通, 高文学.  爆炸荷载下岩石损伤的数值模拟研究[J]. 岩石力学与工程学报, 2001, 20(6): 789-792.   doi: 10.3321/j.issn:1000-6915.2001.06.007
LIU Y T, GAO W X.  Numerical simulation on rock damage under explosion loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(6): 789-792.   doi: 10.3321/j.issn:1000-6915.2001.06.007
[40] 唐红梅, 周云涛, 廖云平.  地下工程施工爆破围岩损伤分区研究[J]. 振动与冲击, 2015, 34(23): 202-206.
TANG H M, ZHOU Y T, LIAO Y P.  Damage zone of surrounding rock of underground engineering under construction blasting[J]. Journal of Vibration and Shock, 2015, 34(23): 202-206.