[1] 岳清瑞, 杨勇新.  纤维增强复合材料加固结构耐久性研究综述[J]. 建筑结构学报, 2009, 30(6): 8-15.
YUE Q R, YANG Y X.  Introduction to durability of concrete strengthened with fiber reinforced polymers[J]. Journal of Building Structures, 2009, 30(6): 8-15.
[2] ZHI X D, WU Q J, WANG C.  Experimental and numerical study of GFRP-reinforced steel tube under axial impact loads[J]. International Journal of Impact Engineering, 2018, 122: 23-37.   doi: 10.1016/j.ijimpeng.2018.07.018
[3] BATUWITAGE C, FAWZIA S, THAMBIRATNAM D, et al.  Impact behaviour of carbon fibre reinforced polymer (CFRP) strengthened square hollow steel tubes: a numerical simulation[J]. Thin-Walled Structures, 2018, 131: 245-257.   doi: 10.1016/j.tws.2018.06.033
[4] ALAM M I, FAWZIA S.  Numerical studies on CFRP strengthened steel columns under transverse impact[J]. Composite Structures, 2015, 120: 428-441.   doi: 10.1016/j.compstruct.2014.10.022
[5] 李洋, 王俊, 刘伟庆.  纤维复合材料-钢组合柱侧向冲击试验和有限元仿真分析[J]. 钢结构, 2017, 32(2): 21-26.
LI Y, WANG J, LIU W Q.  Experimental study and FE simulation of the anti-impact performance of GFRP-steel column subjected to transverse impact[J]. Steel Construction, 2017, 32(2): 21-26.
[6] KADHIM M M A, WU Z J, LEE S C.  Loading rate effects on CFRP strengthened steel square hollow sections under lateral impact[J]. Engineering Structures, 2018, 171: 874-882.   doi: 10.1016/j.engstruct.2018.04.066
[7] KADHIM M M A, WU Z J, LEE S C.  Experimental study of CFRP strengthened steel columns subject to lateral impact loads[J]. Composite Structures, 2018, 185: 94-104.   doi: 10.1016/j.compstruct.2017.10.089
[8]

JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large Strains, high strain rates and high temperatures [C]//Proceedings of the Seventh International Symposium on Ballistics. The Hague, Netherlands, 1983: 1–7.

[9] ZERILLI F J, ARMSTRONG R W.  Dislocation-mechanics-based constitutive relations for material dynamics calculations[J]. Journal of Applied Physics, 1987, 61(5): 1816-1825.   doi: 10.1063/1.338024
[10] LIN L, FAN F, ZHI X D.  Dynamic constitutive relation and fracture model of Q235A steel[J]. Applied Mechanics and Materials, 2013, 274: 463-466.   doi: 10.4028/www.scientific.net/AMM.274
[11] ZHANG D N, SHANGGUAN Q Q, XIE C J, et al.  A modified Johnson-Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy[J]. Journal of Alloys and Compounds, 2015, 619: 186-194.   doi: 10.1016/j.jallcom.2014.09.002
[12] TAN J Q, ZHAN M, LIU S, et al.  A modified Johnson-Cook model for tensile flow behaviors of 7050-T7451 aluminum alloy at high strain rates[J]. Materials Science and Engineering:A, 2015, 631: 214-219.   doi: 10.1016/j.msea.2015.02.010
[13] HASHIN Z.  Failure criterion for unidirectional fiber composite[J]. Journal of Applied Mechanics, 1980, 47: 329-334.   doi: 10.1115/1.3153664
[14] PUCK A, SCHURMANN H.  Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Composites Science and Technology, 2001, 62: 1633-1662.
[15] SINGH H, NAMALA K K, MAHAJAN P.  A damage evolution study of E-glass/epoxy composite under low velocity impact[J]. Composites Part B: Engineering, 2015, 76: 235-248.   doi: 10.1016/j.compositesb.2015.02.016
[16] LIAO B B, LIU P F.  Finite element analysis of dynamic progressive failure of plastic composite laminates under low velocity impact[J]. Composite Structures, 2017, 159: 567-578.   doi: 10.1016/j.compstruct.2016.09.099
[17]

Dassault Systèmes Simulia Corp. ABAQUS 6.11 user’s manual [Z]. Providence, RI: Dassault Systèmes Simulia Corp, 2011.

[18] SHOKRIEH M M, KARAMNEJAD A.  Investigation of strain rate effects on the dynamic response of a glass/epoxy composite plate under blast loading by using the finite difference method[J]. Mechanics of Composite Materials, 2014, 50(3): 295-310.   doi: 10.1007/s11029-014-9415-1