[1] Lurk V K, Forrestal M J. Penetration into Semi-Infinit Reinforced-Concrete Targets with Ogival Nose Projectiles [J]. Int J Impact Eng, 1987, 6(4): 291-301.
[2] Forrestal M J, Altman B S. An Empirical Equation for Penetration Depth of Ogive-Nose Projectiles into Concrete Targets [J]. Int Impact Eng, 1994, 15: 395-405.
[3] Frew D J. Penetration of Concrete Targets with Ogive-Nose Steel Rods [J]. Int J Impact Eng, 1998, 21(6): 489-497.
[4] Young C W. The Development of Empirical Equation for Predicting Depth of an Earth Penetrating Projectile [R]. SC-DR-67-60, 1967.
[5] Bernard R S. Depth and Motion Prediction for Earth Penetrators [R]. US: Army Waterways Experiment Station, 1979.
[6] Holmquist T J, Johnson G R. A Computational Constitutive for Concrete Subjected to Large Strains [A]. Proceeding of Fourteenth International Symposium on Ballistics [C]. Quebec City, Canad, 1993. 591-600.
[7] Johnson G R, Cook W H. Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures [J]. J Eng Fract Mech, 1985, 21(1): 31-48.
[8] Wang K H. Numerical Simulation and Theoretical Studies of Long Rod Projectile Penetration into Concrete Targets [D]. Xi'an: Northwest Institute of Nuclear Technology, 2002. (in Chinese).
[9] 王可慧. 长杆弹侵彻混凝土靶的数值模拟与理论研究 [D]. 西安: 西北核技术研究所, 2002.
[10] Rosinsky R W. Lagrangian Finite Element Analysis of the Penetration of Earth Penetrating Weapons [R]. DE87-005267, 1985.