[1] BIRCH F.  Density and composition of mantle and core[J]. Journal of Geophysical Research, 1964, 69: 4377-4388.   doi: 10.1029/JZ069i020p04377
[2] DREIBUS G, WÄNKE H.  Mars, a volatile-rich planet[J]. Meteoritics, 1985, 20: 367-381.
[3] ANTONANGELI D, MORARD G, SCHMERR N C, et al.  Toward a mineral physics reference model for the Moon’s core[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(13): 3916-3919.   doi: 10.1073/pnas.1417490112

MCDONOUGH W F. Treatise on geochemistry: compositional model for the Earth’s core [M]. New York: Elsevier, 2003: 547–568.

[5] FEI Y, PREWITT C T, MAO H K, et al.  Structure and density of FeS at high pressure and high temperature and the internal structure of Mars[J]. Science, 1995, 268(5219): 1892-1894.   doi: 10.1126/science.268.5219.1892
[6] STEENSTRA E S, LIN Y H, RAI N, et al.  Carbon as the dominant light element in the lunar core[J]. American Mineralogist, 2017, 102(1): 92-97.   doi: 10.2138/am-2017-5727
[7] SKÁLA R, CÍSAŘOVÁ I.  Crystal structure of meteoritic schreibersites: determination of absolute structure[J]. Physics and Chemistry of Minerals, 2005, 31(10): 721-732.   doi: 10.1007/s00269-004-0435-6
[8] BUSECK P R.  Phosphide from metorites: barringerite, a new iron-nickel mineral[J]. Science, 1969, 165(3889): 169-171.   doi: 10.1126/science.165.3889.169
[9] BRITVIN S N, RUDASHEVSKY N S, KRIVOVICHEV S V, et al.  Allabogdanite, (Fe,Ni)2P, a new mineral from the Onello meteorite: the occurrence and crystal structure[J]. American Mineralogist, 2002, 87(8/9): 1245-1249.
[10] PRATESI G.  Icosahedral coordination of phosphorus in the crystal structure of melliniite, a new phosphide mineral from the Northwest Africa 1054 acapulcoite[J]. American Mineralogist, 2006, 91(2/3): 451-454.
[11] REED S J B.  Perryite in the kota-kota and south Oman enstatite chondrites[J]. Mineralogical Magazine and Journal of the Mineralogical Society, 1968, 36(282): 850-854.   doi: 10.1180/minmag.1968.036.282.13

MA C, BECKETT J R, ROSSMAN G R. Discovery of a new phosphide mineral, monipite (MoNiP), in an Allende Type B1 CAI [C]//72nd Meeting of the Meteoritical Society, 2009, 44(Suppl 7): A127.

[13] 梅清风, 杨进辉.  地球早期演化的Hf-W同位素制约[J]. 岩石学报, 2018, 34(1): 207-216.
MEI Q F, YANG J H.  Hf-W isotopic constraints on early evolution of the Earth[J]. Acta Petrologica Sinica, 2018, 34(1): 207-216.
[14] WOOD B J, WALTER M J, WADE J.  Accretion of the Earth and segregation of its core[J]. Nature, 2006, 441(7095): 825-833.   doi: 10.1038/nature04763
[15] YIN Y, LI Z M, ZHAI S M.  The phase diagram of the Fe-P binary system at 3 GPa and implications for phosphorus in the lunar core[J]. Geochimica et Cosmochimica Acta, 2019, 254: 54-66.   doi: 10.1016/j.gca.2019.03.037
[16] STEWART A J, SCHMIDT M W.  Sulfur and phosphorus in the Earth’s core: the Fe-P-S system at 23 GPa[J]. Geophysical Research Letters, 2007, 34(13): L13201-.
[17] SHA L K.  Whitlockite solubility in silicate melts: some insights into lunar and planetary evolution[J]. Geochimica et Cosmochimica Acta, 2000, 64(18): 3217-3236.   doi: 10.1016/S0016-7037(00)00420-8

STEENSTRA E S, VAN WESTRENEN W. Lunar core composition [M]//Encyclopedia of Lunar Science. Cham: Springer International Publishing, 2016: 1–6.

[19] GU T T, FEI Y W, WU X, et al.  Phase stabilities and spin transitions of Fe3(S1–xPx) at high pressure and its implications in meteorites[J]. American Mineralogist, 2016, 101(1): 205-210.   doi: 10.2138/am-2016-5466
[20] GU T T, FEI Y W, WU X, et al.  High-pressure behavior of Fe3P and the role of phosphorus in planetary cores[J]. Earth and Planetary Science Letters, 2014, 390: 296-303.   doi: 10.1016/j.jpgl.2014.01.019
[21] HE X J, GUO J Z, WU X, et al.  Compressibility of natural schreibersite up to 50 GPa[J]. Physics and Chemistry of Minerals, 2019, 46(1): 91-99.   doi: 10.1007/s00269-018-0990-x
[22] NISAR J, AHUJA R.  Structure behavior and equation of state (EOS) of Ni2P and (Fe1–xNix)2P (allabogdanite) from first-principles calculations[J]. Earth and Planetary Science Letters, 2010, 295(3/4): 578-582.
[23] DERA P, LAVINA B, BORKOWSKI L A, et al.  High-pressure polymorphism of Fe2P and its implications for meteorites and Earth’s core[J]. Geophysical Research Letters, 2008, 35(10): L10301-.
[24] DERA P, LAVINA B, BORKOWSKI L A, et al.  Structure and behavior of the barringerite Ni end-member, Ni2P, at deep Earth conditions and implications for natural Fe-Ni phosphides in planetary cores[J]. Journal of Geophysical Research, 2009, 114(B3): B03201-.
[25] WU X, MOOKHERJEE M, GU T T, et al.  Elasticity and anisotropy of iron-nickel phosphides at high pressures[J]. Geophysical Research Letters, 2011, 38(20): L20301-.
[26] DUBROVINSKY L, DUBROVINSKAIA N, BYKOVA E, et al.  The most incompressible metal osmium at static pressures above 750 gigapascals[J]. Nature, 2015, 525: 226-229.   doi: 10.1038/nature14681
[27] HAMMERSLEY A P, SVENSSON S O, HANFLAND M, et al.  Two-dimensional detector software: from real detector to idealised image or two-theta scan[J]. High Pressure Research, 1996, 14(4/5/6): 235-248.
[28] MAO H K, XU J, BELL P M.  Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions[J]. Journal of Geophysical Research, 1986, 91(B5): 4673-.   doi: 10.1029/JB091iB05p04673
[29] SETO Y, NISHIO-HAMANE D, NAGAI T, et al.  Development of a software suite on X-ray diffraction experiments[J]. The Review of High Pressure Science and Technology, 2010, 20(3): 269-276.   doi: 10.4131/jshpreview.20.269
[30] TOBY B H.  EXPGUI, a graphical user interface for GSAS[J]. Journal of Applied Crystallography, 2001, 34(2): 210-213.   doi: 10.1107/S0021889801002242
[31] ANGEL R J, ALVARO M, GONZALEZ-PLATAS J.  EosFit7c and a Fortran module (library) for equation of state calculations[J]. Zeitschrift für Kristallographie: Crystalline Materials, 2014, 229(5): 1165-1176.
[32] FUJII H, HŌKABE T, FUJIWARA H, et al.  Magnetic properties of single crystals of the system (Fe1-xNix)2P[J]. Journal of the Physical Society of Japan, 1978, 44(1): 96-100.   doi: 10.1143/JPSJ.44.96
[33] MAEDA Y, TAKASHIMA Y.  Mössbauer studies of FeNiP and related compounds[J]. Journal of Inorganic and Nuclear Chemistry, 1973, 35(6): 1963-1969.   doi: 10.1016/0022-1902(73)80134-4
[34] BIRCH F.  Finite elastic strain of cubic crystals[J]. Physical Review, 1947, 71(11): 809-.   doi: 10.1103/PhysRev.71.809
[35] ANGEL R J.  Equations of state[J]. Reviews in Mineralogy and Geochemistry, 2000, 41(1): 35-59.   doi: 10.2138/rmg.2000.41.2
[36] KLOTZ S, CHERVIN J C, MUNSCH P, et al.  Hydrostatic limits of 11 pressure transmitting media[J]. Journal of Physics D: Applied Physics, 2009, 42(7): 075413-.   doi: 10.1088/0022-3727/42/7/075413
[37] DEWAELE A, LOUBEYRE P.  Pressurizing conditions in helium-pressure-transmitting medium[J]. High Pressure Research, 2007, 27(4): 419-429.   doi: 10.1080/08957950701659627
[38] RUEFF J P, RAYMOND S, YARESKO A, et al.  Pressure-induced f-electron delocalization in the U-based strongly correlated compounds UPd3 and UPd2Al3: resonant inelastic X-ray scattering and first-principles calculations[J]. Physical Review B, 2007, 76(8): 085113-.   doi: 10.1103/PhysRevB.76.085113
[39] DEWAELE A, LOUBEYRE P, OCCELLI F, et al.  Quasihydrostatic equation of state of iron above 2 Mbar[J]. Physical Review Letters, 2006, 97(21): 215504-.   doi: 10.1103/PhysRevLett.97.215504
[40] CHEN B, PENWELL D, KRUGER M.  The compressibility of nanocrystalline nickel[J]. Solid State Communications, 2000, 115(4): 191-194.   doi: 10.1016/S0038-1098(00)00160-5
[41] WILLIAMS J G, BOGGS D H, YODER C F, et al.  Lunar rotational dissipation in solid body and molten core[J]. Journal of Geophysical Research: Planets, 2001, 106(E11): 27933-27968.   doi: 10.1029/2000JE001396
[42] WILLIAMS J G, KONOPLIV A S, BOGGS D H, et al.  Lunar interior properties from the GRAIL mission[J]. Journal of Geophysical Research: Planets, 2014, 119(7): 1546-1578.   doi: 10.1002/2013JE004559

LOGNONNÉ P, JOHNSON C L. Treatise in Geophysics: planetary seismology [M]. Oxford, UK: Elsevier, 2007: 69–122.

[44] WIECZOREK M A.  The constitution and structure of the lunar interior[J]. Reviews in Mineralogy and Geochemistry, 2006, 60(1): 221-364.   doi: 10.2138/rmg.2006.60.3
[45] RAI N, VAN WESTRENEN W.  Lunar core formation: new constraints from metal-silicate partitioning of siderophile elements[J]. Earth and Planetary Science Letters, 2014, 388: 343-352.   doi: 10.1016/j.jpgl.2013.12.001
[46] STEENSTRA E S, RAI N, KNIBBE J S, et al.  New geochemical models of core formation in the Moon from metal-silicate partitioning of 15 siderophile elements[J]. Earth and Planetary Science Letters, 2016, 441: 1-9.   doi: 10.1016/j.jpgl.2016.02.028
[47] WEBER R C, LIN P Y, GARNERO E J, et al.  Seismic detection of the lunar core[J]. Science, 2011, 331(6015): 309-312.   doi: 10.1126/science.1199375
[48] MORARD G, BOUCHET J, RIVOLDINI A, et al.  Liquid properties in the Fe-FeS system under moderate pressure: tool box to model small planetary cores[J]. American Mineralogist, 2018, 103: 1770-1779.
[49] JING Z C, WANG Y B, KONO Y, et al.  Sound velocity of Fe-S liquids at high pressure: implications for the Moon’s molten outer core[J]. Earth and Planetary Science Letters, 2014, 396: 78-87.   doi: 10.1016/j.jpgl.2014.04.015
[50] CHI H, DASGUPTA R, DUNCAN M S, et al.  Partitioning of carbon between Fe-rich alloy melt and silicate melt in a magma ocean: implications for the abundance and origin of volatiles in Earth, Mars, and the Moon[J]. Geochimica et Cosmochimica Acta, 2014, 139: 447-471.   doi: 10.1016/j.gca.2014.04.046
[51] RIGHTER K, GO B M, PANDO K A, et al.  Phase equilibria of a low S and C lunar core: implications for an early lunar dynamo and physical state of the current core[J]. Earth and Planetary Science Letters, 2017, 463: 323-332.   doi: 10.1016/j.jpgl.2017.02.003
[52] RIGHTER K, DRAKE M J.  Core formation in Earth’s Moon, Mars, and Vesta[J]. Icarus, 1996, 124(2): 513-529.   doi: 10.1006/icar.1996.0227
[53] NEWSOM H E, DRAKE M J.  Experimental investigation of the partitioning of phosphorus between metal and silicate phases: implications for the Earth, Moon, and Eucrite parent body[J]. Geochimica et Cosmochimica Acta, 1983, 47(1): 93-100.   doi: 10.1016/0016-7037(83)90093-5
[54] CHANTEL J, JING Z C, XU M, et al.  Pressure dependence of the liquidus and solidus temperatures in the Fe-P binary system determined by in situ ultrasonics: implications to the solidification of Fe-P liquids in planetary cores[J]. Journal of Geophysical Research: Planets, 2018, 123(5): 1113-1124.   doi: 10.1029/2017JE005376
[55] MININ D A, SHATSKIY A F, LITASOV K D, et al.  The Fe-Fe2P phase diagram at 6 GPa[J]. High Pressure Research, 2019, 39(1): 50-68.   doi: 10.1080/08957959.2018.1562552
[56] CHEN B, GAO L, FUNAKOSHI K, et al.  Thermal expansion of iron-rich alloys and implications for the Earth’s core[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(22): 9162-9167.   doi: 10.1073/pnas.0610474104
[57] TSUJINO N, NISHIHARA Y, NAKAJIMA Y, et al.  Equation of state of γ-Fe: reference density for planetary cores[J]. Earth and Planetary Science Letters, 2013, 375: 244-253.   doi: 10.1016/j.jpgl.2013.05.040
[58] FISCHER R A, CAMPBELL A J, CARACAS R, et al.  Equations of state in the Fe-FeSi system at high pressures and temperatures[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(4): 2810-2827.   doi: 10.1002/2013JB010898