[1] LASTOVICKOVA M.  A review of laboratory measurements of the electrical conductivity of rocks and minerals[J]. Physics of the Earth and Planetary Interiors, 1991, 66(1/2): 1-11.

谢鸿森. 地球深部物质科学导论 [M]. 北京: 科学出版社, 1997: 87–88.

XIE H S. Introduction to deep earth material science [M]. Beijing: Science Press, 1997: 87–88.

[3] 刘雷, 杜建国, 易丽.  亚稳态橄榄石相变与深源地震研究进展[J]. 地震, 2007, 27(3): 41-49.   doi: 10.3969/j.issn.1000-3274.2007.03.006
LIU L, DU J G, YI L.  An advance in metastable olivine phase transformation and deep-focus seismicity[J]. Earthquake, 2007, 27(3): 41-49.   doi: 10.3969/j.issn.1000-3274.2007.03.006
[4] 吴耀, 张艳飞, 王雁宾, 等.  地幔转换带底部橄榄石和辉石高压相变实验研究:对660 km地震不连续面结构的启示[J]. 中国科学:地球科学, 2013, 43(12): 1943-1951.
WU Y, ZHANG Y F, WANG Y B, et al.  Experimental investigation of phase transformations of olivine and enstatite at the lower part of the mantle transition zone: implications for structure of the 660 km seismic discontinuity[J]. Science China: Earth Sciences, 2013, 43(12): 1943-1951.
[5] 秦霏, 王英, 巫翔, 等.  天然橄榄石单晶的压缩性[J]. 高压物理学报, 2016, 30(1): 20-26.   doi: 10.11858/gywlxb.2016.01.003
QIN F, WANG Y, WU X, et al.  Compressibility of natural olivine single-crystals[J]. Chinese Journal of High Pressure Physics, 2016, 30(1): 20-26.   doi: 10.11858/gywlxb.2016.01.003
[6] SUNG C M, BURNS R G.  Kinetics of the high-pressure phase transformations: implications to the evolution of the olivine-spinel phase transition in the downgoing lithosphere and its consequences on the dynamics of the mantle[J]. Tectonophysics, 1976, 31: 1-32.   doi: 10.1016/0040-1951(76)90165-7
[7] 韩鹏, 刘迁迁, 孙振添, 等.  全球主要俯冲带处板块运动与地震各向异性及应力场的相关性讨论[J]. 地震, 2014, 34(4): 1-11.   doi: 10.3969/j.issn.1000-3274.2014.04.001
HAN P, LIU Q Q, SUN Z T, et al.  A discussion on correlation of plate motions with seismic anisotropy and stress field in global subduction zones[J]. Earthquake, 2014, 34(4): 1-11.   doi: 10.3969/j.issn.1000-3274.2014.04.001
[8] ANDRAULT D, BOUHIFD M A, ITIE J P, et al.  Compression and amorphization of (Mg, Fe)2SiO4 olivines: an X-ray diffraction study up to 70 GPa[J]. Physics and Chemistry of Minerals, 1995, 22(2): 99-107.
[9] 谢鸿森, 彭文世, 薛承林, 等.  镁铁橄榄石系列的高压合成及其X射线衍射和红外光谱研究[J]. 矿物学报, 1986, (2): 103-108.   doi: 10.3321/j.issn:1000-4734.1986.02.002
XIE H S, PENG W S, XUE C L, et al.  Synthesis, infrared spectra and X-ray diffraction of Mg-Fe olivine[J]. Acta Mineralogica Sinica, 1986, (2): 103-108.   doi: 10.3321/j.issn:1000-4734.1986.02.002
[10] KLEPPE A K, JEPHCOAT A P, SMYTH J R.  Raman spectroscopic study of hydrous γ-Mg2SiO4 to 56.5 GPa[J]. Physics and Chemistry of Minerals, 2002, 29(7): 473-476.   doi: 10.1007/s00269-002-0255-5
[11] 刘曦, 代立东, 邓力维, 等.  近十年我国在地球内部物质高压物性实验研究方面的主要进展[J]. 高压物理学报, 2017, 31(6): 657-681.   doi: 10.11858/gywlxb.2017.06.001
LIU X, DAI L D, DENG L W, et al.  Recent progresses in some fields of high-pressure physics relevant to earth sciences achieved by Chinese scientists[J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 657-681.   doi: 10.11858/gywlxb.2017.06.001
[12] 马艳梅, 崔启良, 刘景, 等.  橄榄石的等温状态方程[J]. 矿物学报, 2006, 26(4): 373-376.   doi: 10.3321/j.issn:1000-4734.2006.04.004
MA Y M, CUI Q L, LIU J, et al.  Isothermal equation of state of olivine[J]. Acta Mineralogica Sinica, 2006, 26(4): 373-376.   doi: 10.3321/j.issn:1000-4734.2006.04.004
[13] TSUCHIYA J, TSUCHIYA T.  First-principles investigations on the elastic and vibrational properties of hydrous wadsleyite under pressure[J]. Geochimica et Cosmochimica Acta Supplement, 2009, 73: A1350-.
[14] LI L, BRODHOLT J, ALFÈ D.  Structure and elasticity of hydrous ringwoodite: a first principle investigation[J]. Physics of the Earth and Planetary Interiors, 2009, 177(3/4): 103-115.
[15] 马艳梅, 崔启良, 周强, 等.  橄榄石原位高温拉曼光谱研究[J]. 吉林大学学报(地球科学版), 2006, 36(3): 342-345.
MA Y M, CUI Q L, ZHOU Q, et al.  In-situ raman study of olivine under high temperature[J]. Journal of Jilin University (Earth Science Edition), 2006, 36(3): 342-345.
[16] KOHLSTEDT D L, KEPPLER H, RUBIE D C.  Solubility of water in the α, β and γ phases of (Mg, Fe)2SiO4[J]. Contributions to Mineralogy & Petrology, 1996, 123(4): 345-357.
[17] BELL D R, ROSSMAN G R.  Water in Earth’s mantle: the role of nominally anhydrous minerals[J]. Science, 1992, 255(5050): 1391-1397.   doi: 10.1126/science.255.5050.1391
[18] 余日东, 金振民.  蛇纹石脱水与大洋俯冲带中源地震(70~300 km)的关系[J]. 地学前缘, 2006, 13(2): 191-204.   doi: 10.3321/j.issn:1005-2321.2006.02.017
YU R D, JIN Z M.  Relationship between dehydration of serpentine and intermediate-focus earthquakes in oceanic subduction zone[J]. Earth Science Frontiers, 2006, 13(2): 191-204.   doi: 10.3321/j.issn:1005-2321.2006.02.017
[19] CHEN J H, INOUE T, YURIMOTO H, et al.  Effect of water on olivine wadsleyite phase boundary in the (Mg,Fe)2SiO4 system[J]. Geophysical Research Letters, 2002, 29(18): 21-22.   doi: 10.1029/2002GL014948
[20] GROVE T L, CHATTERJEE N, PARMAN S W, et al.  The influence of H2O on mantle wedge melting[J]. Earth and Planetary Science Letters, 2006, 249(1/2): 74-89.
[21] HIRTH G, KOHLSTEDT D L.  Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere[J]. Earth and Planetary Science Letters, 1996, 144(1/2): 93-108.
[22] MEI S, KOHLSTEDT D L.  Influence of water on plastic deformation of olivine aggregates: 1. diffusion creep regime[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B9): 21457-21469.   doi: 10.1029/2000JB900179
[23] 谢梦雨, 鹿亚, 邹心宇, 等.  月幔条件下水在橄榄石中扩散的实验研究[J]. 高压物理学报, 2018, 32(1): 71-81.   doi: 10.11858/gywlxb.20170645
XIE M Y, LU Y, ZOU X Y, et al.  Water diffusion in olivine under lunar mantle conditions[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 71-81.   doi: 10.11858/gywlxb.20170645
[24] HOSOYA T, KUBO T, OHTANI E, et al.  Water controls the fields of metastable olivine in cold subducting slabs[J]. Geophysical Research Letters, 2005, 32(17): 261-.
[25] KUBO T, OHTANI E, KATO T, et al.  Effects of water on the alpha-beta transformation kinetics in san carlos olivine[J]. Science, 1998, 281(5373): 85-87.   doi: 10.1126/science.281.5373.85
[26] HONG S M, CHEN L Y, LIU X R, et al.  High pressure jump apparatus for measuring Grüneisen parameter of NaCl and studying metastable amorphous phase of poly (ethylene terephthalate)[J]. Review of Scientific Instruments, 2005, 76(5): 53905-53906.   doi: 10.1063/1.1899443
[27] 王君龙, 刘秀茹, 张林基, 等.  快速增压法研究温度对铝和氯化钠Grüneisen参数的影响[J]. 高压物理学报, 2018, 32(4): 25-32.   doi: 10.11858/gywlxb.20170534
WANG J L, LIU X R, ZHANG L J, et al.  Effect of temperature on Grüneisen parameters of aluminum and sodium chloride by rapid compression method[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 25-32.   doi: 10.11858/gywlxb.20170534
[28] HAMMERSLEY A P, SVENSSON S O, HANFLAND M, et al.  Two-dimensional detector software: from real detector to idealised image or two-theta scan[J]. International Journal of High Pressure Research, 1996, 14(4/5/6): 235-248.
[29] KARKI B B, DUAN W, DA SILVA C R S, et al.  Ab initio structure of MgSiO3 ilmenite at high pressure[J]. American Mineralogist, 2000, 85(2/3): 317-320.
[30] LAM P K, YU R, LEE M W.  Structural distortions and vibrational modes in Mg2SiO4[J]. American Mineralogist, 1990, 75(1): 109-119.
[31] WANG S Y, SHARMA S K, COONEY T F.  Micro-Raman and infrared spectral study of forsterite under high pressure[J]. American Mineralogist, 1993, 78(5): 469-476.
[32] 李月, 周瑶琪, 颜世永, 等.  高压下橄榄石的激光拉曼光谱研究[J]. 光散射学报, 2006, 18(1): 10-15.   doi: 10.3969/j.issn.1004-5929.2006.01.003
LI Y, ZHOU Y Q, YAN S Y, et al.  The laser raman spectroscopic study of olivine at high pressure[J]. Journal of Light Scattering, 2006, 18(1): 10-15.   doi: 10.3969/j.issn.1004-5929.2006.01.003
[33] 朱蓓蓓, 王勤, 王良书, 等.  河北阳原新生代玄武岩中橄榄岩捕虏体的含水量研究[J]. 高校地质学报, 2009, 15(2): 263-272.   doi: 10.3969/j.issn.1006-7493.2009.02.016
ZHU B B, WANG Q, WANG L S, et al.  Water content of peridotite xenoliths from cenozoic basalt in Yangyuan, Hebei province[J]. Geological Journal of China Universities, 2009, 15(2): 263-272.   doi: 10.3969/j.issn.1006-7493.2009.02.016