[1] Djurado E, Boulc'h F, Pivkina A, et al. Cold Isostatic and Explosiveisodynamic Compaction of Y-TZP Nanoparticles [J]. Solid State Ionics, 2002, (154-155): 375-380.
[2] Mamalis A G. Manufacturing of Bulk High-Tc Superconductors [J]. International Journal of Inorganic Material, 2000, 2: 623-633.
[3] Counihan P J, Crawford A, Thadhani N N. Influence of Dynamic Densification on Nanostructure Formation in Ti5Si3 Intermetallic Alloy and Its Bulk Properties [J]. Material Science and Engneering, 1999, A267: 26-35.
[4] Shang S S, Hokamoto K, Meyers M. A. Hot Dynamic Consolidation of Hard Ceramics [J]. J Mater Sci, 1992, 27, 5470-5476.
[5] Hokamoto K, Tanaka S, Fujita M, et al. High Temperature Shock Consolidation of Hard Ceramic Powders [J]. Physica, 1997, B239: 1-5.
[6] Prummer R, Weinor P. Explosive Consolidation of Nanopowders [J]. Interceram, 2002, 51(6): 394-398.
[7] Zhang D, Wu M S, Feng R. Micromechanical Investigation of Heterogeneous Microplasticity in Ceramics Deformed under High Confining Stresses [J]. Mechanics of Materials, 2005, 37: 95-112.
[8] Grady D E. Local Inertia Effects Indynamic Fragmentation [J]. J Appl Phys, 1982, 68: 322-325.
[9] Kipp M E, Grady D E. Dynamic Fracture Growth and Interaction in One Dimension [J]. Physics Mechanics Solids, 1985, 33: 399-415.
[10] Schwarz R B, Kasiraj P, Vreeland T, et al. A Theory for the Shock-Wave Consolidation of Powders [J]. Acta Metal, 1984, 32(8): 1243-1252.
[11] Nemat-Nasser S, Deng H. Strain-Rate Effect on Brittle Failure in Compression [J]. Acta Metall Mater, 1994, 42(3): 1013-1024.
[12] Ravichandran G, Subhash G. A Micromechanical Model for High Strain Rate Behavior of Ceramics [J]. International Journal of Solids Structures, 1995, 32(17/18): 2627-2646.
[13] Mamais A G, Vottea I N, Manolakos D E. On the Modeling of the Compaction Mechanism of Shock Compacted Powder [J]. Journal of Materials Processing Technology, 2001, 108: 165-178.
[14] Meyers M A, Bendon D J, Olevsky E A. Shock Consolidation: Microstructurally-Based Analysis and Computational Modeling [J]. Acta Materials, 1999, 47(7): 2089-2108.
[15] Wang L L. Foundation of Stress Wave [M]. Beijing: National Defence Industry Press, 1985: 1-2. . (in Chinese).
[16] 王礼立. 应力波基础 [M]. 北京: 国防工业出版社, 1985: 1-2.
[17] Grady D E. Shock-Wave Compression of Brittle Solids [J]. Mechanics of Materials, 1998, 29: 181-203.
[18] Tang W H, Zhang R Q, Hu J B, et al. Approximation Calculation Methods of Shock Temperature [J]. Advances in Mechanics, 1998, 28(4): 479-487. (in Chinese).
[19] 汤文辉, 张若棋, 胡金彪, 等. 冲击温度的近似计算 [J]. 力学进展, 1998, 28(4): 479-487.
[20] Kim B C, Lee J H, Kim J J, et al. Densification of Nanocrystalline ITO Powders in Fast Firing: Effect of Specimen Mass and Sintering Atmosphere [J]. Materials Reserch Bulletin, 2005, 40: 395-404.
[21] Xu Z L. Elastic Mechanics(3rd ed) [M]. Beijing: Higher Education Press, 1990: 283-309. (in Chinese).
[22] 徐芝纶. 弹性力学(上)(第3版) [M]. 北京: 高等教育出版社, 1990: 283-309.
[23] Geen D J. Introduction of Mechanic Property of Ceramic Material [M]. Translated by Gong J H. Beijing: Qinghua University Press, 2003: 21. (in Chinese).
[24] Geen D J. 陶瓷材料力学性能导论 [M]. 龚江宏译. 北京: 清华大学出版社, 2003: 21.
[25] Xi T G. Thermo-Physics Character of Inorganic Materia [M]. Shang hai: Shanghai Science Technology Press, 1981: 33-34, 214. (in Chinese).
[26] 奚同庚. 无机材料热物性学 [M]. 上海: 上海科学技术出版社, 1981: 33-34, 214.
[27] Wang L S. Special Ceramic(2nd ed) [M]. Changsha: Centrol South University Press, 2005: 72-74. (in Chinese).
[28] 王零森. 特种陶瓷(第2版) [M]. 长沙: 中南大学出版社, 2005: 72-74.
[29] Li D H, Wang W. A Study of the Equation of State of Alumina Ceramics [J]. Chinese Journal of High Pressure Physics, 1993, 7(3): 226-231. (in Chinese).
[30] 李大红, 王悟. 陶瓷物态方程实验研究 [J]. 高压物理学报, 1993, 7(3): 226-231.
[31] Shih C J, Meyers M A, Nesterenko V F, et al. Damage Evolution in Dynamic Deformation of Silican Carbide [J]. Acta Mater, 2000, 48: 2399-2420.
[32] Jiang B, Weng G J. A Theory of Compressive Yield Strength of Nano-Grained Ceramics [J]. International Journal of Plasticy, 2004, 20: 2007-2026.
[33] Karch J, Birringer R, Gleiter H. Ceramics Ductile at Llow Temperature [J]. Nature, 1987, 330: 556-558.
[34] Kirchheim R, Mutschele T, Kieninger W. Hydrogen in Amorphous and Nanocrystalline Metals [J]. Material Science and Engneering, 1988, 99: 457-462.