[1] Sun C W, Wei Y Z, Zhou Z K. Applied Detonation Physics [M]. Beijing: National Defence Industry Press, 2000: 488-493. (in Chinese).
[2] 孙承纬, 卫玉文, 周之奎. 应用爆轰物理 [M]. 北京: 国防工业出版社, 2000: 488-493.
[3] Bdzil J B, Stewart D S. Modeling Two-Dimensional Detonation with Detonation Shock Dynamics [J]. Phys Fluids A, 1989, 1(7): 1261-1267.
[4] Bdzil J B, Fickett W. Detonation Shock Dynamics: A New Approach to Modeling Multi-Dimensional Detonation Waves [A]//Proceedings of Ninth Symposium (International) on detonation [C]. Oregon: Office of Naval Research, 1989: 730-742.
[5] Lambourn B D, Swift D C. Application of Whitham's Shock Dynamics Theory to the Propagation of Divergen Detonation Waves [A]//Proceedings of Ninth Symposium (International) on Detonation [C]. Oregon: Office of Naval Research, 1989: 784-797. [5] Lambert D E. Experimental Validation of Detonation Shock Dynamics in Condensed Explosives [J]. Journal of Fluid Mechanics, 2006, 546: 227-253.
[6] Aslam T D. Detonation Shock Dynamics Calibration of PBX 9501 [A]//Shock Compression of Condensed Matter [C]. Hawaii: American Institute of Physics, 2007: 813-816.
[7] Sun C W, Zhao F, Gao W. A Detonation Shock Dynamics Approach to the Diameter Effect of Explosive Sticks [J]. Explosion and Shock Waves, 1996, 16(3): 193-201. (in Chinese).
[8] 孙承纬, 赵峰, 高文. 研究爆速直径效应的爆轰冲击动力学方法 [J]. 爆炸与冲击, 1996, 16(3): 193-201.
[9] Tan D W, Fang Q, Zhang G S, et al. Experimental Study on the Diameter Effect for JB-9014 Rate Sticks [J]. Explosion and Shock Waves, 2003, 23(4): 300-304. (in Chinese).
[10] 谭多望, 方青, 张光升, 等. 钝感炸药直径效应实验研究 [J]. 爆炸与冲击, 2003, 23(4): 300-304.
[11] Aslam T D, Bdzil J B, Hill L G. Analysis of the LANL Detonation-Confinement Test [A]//Shock Compression of Condensed Matter [C]. Oregon: American Institute of Physics, 2003: 831-834.
[12] Bdzil J B, Davis W C. Detonation Shock Dynamics(DSD) Calibration for PBX 9502 [A]//Proceeding of Tenth Symposium (International) on Detonation [C]. Boston: Office of Naval Research, 1993: 146-149.
[13] Collyer A M, Dunnett J D, Swift D C, et al. WBL Detonation Wave Propagation for EDC35 and EDC37 [A]//Proceeding of Eleventh Symposium (International) on Detonation [C]. Colorado: Office of Naval Research, 1997: 12-20.
[14] Bdzil J B, Stewart D S. Time-Dependent Two-Dimensional Detonation: The Interaction of Edge Rarefactions with Finite-Length Reaction Zones [J]. Journal of Fluid Mechanics, 1986, 171(1): 1-26.
[15] David L K. Multi-Valued Normal Shock Velocity versus Curvature Relationships for Highly Non-Ideal Explosives [A]//Proceeding of Eleventh Symposium (International) on Detonation [C]. Colorado: Office of Naval Research, 1997: 181-192.
[16] Hill L G, Bdzil J B, Aslam T D. Front Curvature Rate Stick Measurements and Detonation Shock Dynamics Calibration for PBX 9502 over a Wide Temperature Range [A]//Proceeding of Eleventh Symposium (International) on Detonation [C]. Colorado: Office of Naval Research, 1997: 1029-1037.
[17] Zhang W S. Finite Difference Methods for Partial Differential Equations in Science Computation [M]. Beijing: Higher Education Press, 2008: 246-251. (in Chinese).
[18] 张文生. 科学计算中的偏微分方程有限差分法 [M]. 北京: 高等教育出版社, 2008: 246-251.
[19] Zhou M, Sun S D. Genetic Algorithms: Theory and Applications [M]. Beijing: National Defence Industry Press, 1999: 18-31. (in Chinese).
[20] 周明, 孙树栋. 遗传算法原理及应用 [M]. 北京: 国防工业出版社, 1999: 18-31.
[21] Campell A W. Diameter Effect and Failure Diameter of a TATB-Based Explosive [J]. Propellants, Explosive, Pyrotechnics, 1984, 9: 183-187.
[22] Hill L G, Aslam T D. The LANL Detonation-Confinement Test: Prototype Development and Sample Results [A]//Shock Compression of Condensed Matter [C]. Oregon: American Institute of Physics, 2003: 847-850.