[1] ALTSHULER L V, KRUPNIKOV K K, LEDENEV B N, et al.  Dynamic compressibility and equation of state for iron under high pressure[J]. Soviet Physics-JETP, 1958, : 34-.
[2]

MCQUEEN R G, MARSH S P, TAYLOR J W, et al. The equation of state of solids from shock wave studies [M]. Los Alamos, New Mexico: University of California, 1970: 293–417.

[3]

FREDENBURG D A. Shock compaction and impact response of thermit powder mixtures [D]. Georgia: Georgia Institute of Technology, 2010.

[4] HERRMANN W.  Constitutive equation for the dynamic compaction of ductile porous materials[J]. Journal of Applied Physics, 1969, 40(6): 2490-2499.   doi: 10.1063/1.1658021
[5] DAI C D, EAKINS D E, THADHANI N N.  Dynamic densification behavior of nanoiron powders under shock compression[J]. Journal of Applied Physics, 2008, 103(9): 093503-.   doi: 10.1063/1.2908209
[6] BUTCHER B M, KARNES C H.  Dynamic compaction of porous iron[J]. Journal of Applied Physics, 1969, 40(7): 2967-2976.   doi: 10.1063/1.1658109
[7] CARROLL M M, HOLT A C.  Static and dynamic pore‐collapse relations for ductile porous materials[J]. Journal of Applied Physics, 1972, 43(4): 1626-1636.   doi: 10.1063/1.1661372
[8] GRADY D, KERLEY E G I, KUHNS L D, et al.  Computational modeling and wave propagation in media with inelastic deforming microstructure[J]. Journal de Physique, IV: Proceedings of International Conference, 2000, 10(9): 15-20.
[9]

MEYERS M A. Shock waves: equations of state [M]. John Wiley & Sons, Inc., 2007.

[10] MCQUEEN R G, MARSH S P.  Equation of state for nineteen metallic elements from shock‐wave measurements to two megabars[J]. Journal of Applied Physics, 1960, 31(7): 1253-1269.   doi: 10.1063/1.1735815
[11] ALEKSEEV Y F, AL’TSHULER L V, KRUPNIKOVA V P.  Shock compression of two-component paraffin-tungsten mixtures[J]. Journal of Applied Mechanics Technical Physics, 1971, 12(4): 624-627.
[12]

BATSANOV S S. Effects of explosions on materials [M]. New York: Springer, 1994.

[13]

MEYERS M A. Dynamic Behavior of Materials [M]. San Diego: University of California, 1994.

[14] KRUEGER B R, MUTZ A H, VREELAND T.  Correlation of shock initiated and thermally initiated chemical reactions in a 1∶1 atomic ratio nickel‐silicon mixture[J]. Journal of Applied Physics, 1991, 70(10): 5362-5368.   doi: 10.1063/1.350217
[15] WENG J, TAN H, WANG X, et al.  Optical-fiber interferometer for velocity measurements with picosecond resolution[J]. Applied Physics Letters, 2006, 89(11): 111101-.   doi: 10.1063/1.2335948
[16] FREDENBURG D A, KOLLER D D, RIGG P A, et al.  High-fidelity Hugoniot analysis of porous materials[J]. Review of Scientific Instruments, 2013, 84(1): 013903-.   doi: 10.1063/1.4774394
[17] MITCHELL A C, NELLIS W J.  Shock compression of aluminum, copper, and tantalum[J]. Journal of Applied Physics, 1981, 52(5): 3363-3374.   doi: 10.1063/1.329160
[18] FREDENBURG D A, THADHANI N N.  On the applicability of the P-\begin{document}$\alpha $\end{document} and P-\begin{document}$\lambda $\end{document} models to describe the dynamic compaction response of highly heterogeneous powder mixtures[J]. Journal of Applied Physics, 2013, 113(4): 043507-.   doi: 10.1063/1.4788700
[19]

BROWN J L, VOGLER T J, GRADY D E, et al. Dynamic compaction of sand [C]//Shock Compression of Condensed Matter-2007, 2007: 1363–1366.

[20] NEEL C H.  Shock compression of a heterogeneous, porous polymer composite[J]. Dissertations & Theses-Gradworks, 2010, : -.