[1] HUBBARB W B.Interiors of the giant planets[J].Science, 1981, 214(4517):145-149.  doi: 10.1126/science.214.4517.145
[2] STEVENSON D J.Interiors of the giant planets[J].Annual Review of Earth and Planetary Sciences, 1982, 10(1):257-295.  doi: 10.1146/annurev.ea.10.050182.001353
[3] MCCRORY R L, MEYERHOFER D D, BETTI R, et al.Progress in direct-drive inertial confinement fusion[J].Physics of Plasmas, 2008, 15(5):055503.  doi: 10.1063/1.2837048
[4] MEYERHOFER D D, MCCRORY R L, BETTI R, et al.High-performance inertial confinement fusion target implosions on OMEGA[J].Nuclear Fusion, 2011, 51(5):053010.  doi: 10.1088/0029-5515/51/5/053010
[5] LINDL J D.Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J].Physics of Plasmas, 1995, 2(11):3933-4024.  doi: 10.1063/1.871025
[6] HU S X, GONCHAROV V N, BOEHLY T R, et al.Impact of first-principles properties of deuterium-tritium on inertial confinement fusion target designs[J].Physics of Plasmas, 2015, 22(5):056304.  doi: 10.1063/1.4917477
[7] NOH J, FULGUERAS A M, SEBASTIAN L J, et al.Estimation of thermodynamic properties of hydrogen isotopes and modeling of hydrogen isotope systems using Aspen Plus simulator[J].Journal of Industrial and Engineering Chemistry, 2017, 46:1-8.  doi: 10.1016/j.jiec.2016.07.053
[8] LEACHMAN J W, JACOBSEN R T, PENONCELLO S G, et al.Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen[J].Journal of Physical and Chemical Reference Data, 2009, 38(3):721-748.  doi: 10.1063/1.3160306
[9] RICHARDSON A, LEACHMAN J W, LEMMON E W.Fundamental equation of state for deuterium[J].Journal of Physical and Chemical Reference Data, 2014, 43(1):013103.  doi: 10.1063/1.4864752
[10] AZADI S, FOULKES W M C.Fate of density functional theory in the study of high-pressure solid hydrogen[J].Physical Review B, 2013, 88(1):014115.  doi: 10.1103/PhysRevB.88.014115
[11] MCMAHON J M, MORALES M A, PIERLEONI C, et al.The properties of hydrogen and helium under extreme conditions[J].Reviews of Modern Physics, 2012, 84(4):1607-1653.
[12] KNUDSON M D, DESJARLAIS M P.High-precision shock wave measurements of deuterium:evaluation of exchange correlation functionals at the molecular-to-atomic transition[J].Physical Review Letters, 2017, 118(3):035501.  doi: 10.1103/PhysRevLett.118.035501
[13] NATOLI V V, MARTIN R M, CEPERLEY D M.Crystal structure of atomic hydrogen[J].Physical Review Letters, 1993, 70(13):1952-1955.  doi: 10.1103/PhysRevLett.70.1952
[14] SILVERA F.The solid molecular hydrogens in the condensed phase:fundamentals and static properties[J].Reviews of Modern Physics, 1980, 52(2):393-452.  doi: 10.1103/RevModPhys.52.393
[15] MAO H K, HEMLEY R J.Ultrahigh-pressure transitions in solid hydrogen[J].Reviews of Modern Physics, 1994, 66(2):671-692.  doi: 10.1103/RevModPhys.66.671
[16] MAKSIMOV E G, SHILOV Y I.Hydrogen at high pressure[J].Physics Uspekhi, 1999, 42(11):1121-1138.  doi: 10.1070/PU1999v042n11ABEH000666
[17] REDMER R, RÖPKE G.Progress in the theory of dense strongly coupled plasmas[J].Contributions to Plasma Physics, 2010, 50(10):970-985.  doi: 10.1002/ctpp.201000079
[18] GRYAZNOV V K, IOSILEVSKIY I L.Thermodynamic properties of hydrogen plasma to megabars[J].Contributions to Plasma Physics, 2016, 56(3/4):352-360.
[19] MAO H K, CHEN B, CHEN J H, et al.Recent advances in high-pressure science and technology[J].Matter and Radiation at Extremes, 2016, 1(1):59-75.  doi: 10.1016/j.mre.2016.01.005
[20] GARBEROGLIO G, JANKOWSKI P, SZALEWICZ K, et al.Second virial coefficients of H2 and its isotopologues from a six-dimensional potential[J].The Journal of Chemical Physics, 2012, 137(15):154308.  doi: 10.1063/1.4757565
[21]

SOUERS P C.Hydrogen properties for fusion energy[M].Los Angeles:University of California Press, 1986.

[22] SAKODA N, SHINDO K, SHINZATO K, et al.Review of the thermodynamic properties of hydrogen based on existing equations of state[J].International Journal of Thermophysics, 2010, 31(2):276-296.  doi: 10.1007/s10765-009-0699-7
[23] LOUBEYRE P, LETOULLEC R, HÄUSERMANN D, et al.X-ray diffraction and equation of state of hydrogen at megabar pressures[J].Nature, 1996, 383(6602):702-704.  doi: 10.1038/383702a0
[24] HEMLEY R J, MAO H K, GONCHAROV A F, et al.Synchrotron infrared spectroscopy to 0.15 eV of H2 and D2 at megabar pressures[J].Physical Review Letters, 1996, 76:1667.  doi: 10.1103/PhysRevLett.76.1667
[25] GONCHAROV A F, GREGORYANZ E, HEMLEY R J, et al.Spectroscopic studies of the vibrational and electronic properties of solid hydrogen to 285 GPa[J].Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(25):14234-14237.  doi: 10.1073/pnas.201528198
[26] DATCHI F, LOUBEYRE P, LETOULLEC R.Extended and accurate determination of the melting curves of argon, helium, ice(H2O), and hydrogen(H2)[J].Physical Review B, 2000, 61(10):6535-6546.  doi: 10.1103/PhysRevB.61.6535
[27] GREGORYANZ E, GONCHAROV A F, MATSUISHI K, et al.Raman spectroscopy of hot dense hydrogen[J].Physical Review Letters, 2003, 90(17):175701.  doi: 10.1103/PhysRevLett.90.175701
[28] NELLIS W J, MITCHELL A C, VAN THIEL M, et al.Equation-of-state data for molecular hydrogen and deuterium at shock pressures in the range 2-76 GPa(20-760 kbar)[J].The Journal of Chemical Physics, 1983, 79(3):1480-1486.  doi: 10.1063/1.445938
[29] WEIR S T, MITCHELL A C, NELLIS W J.Metallization of fluid molecular hydrogen at 140 GPa(1.4 Mbar)[J].Physical Review Letters, 1996, 76(11):1860-1863.  doi: 10.1103/PhysRevLett.76.1860
[30] KNUDSON M D, HANSON D L, BAILEY J E, et al.Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques[J].Physical Review B, 2004, 69(14):144209.  doi: 10.1103/PhysRevB.69.144209
[31] TRUNIN R F, URLIN V D, MEDVEDEV A B.Dynamic compression of hydrogen isotopes at megabar pressures[J].Physics-Uspekhi, 2010, 53(6):577-593.  doi: 10.3367/UFNe.0180.201006d.0605
[32] BELOV S I, BORISKOV G V, BYKOV A I, et al.Shock compression of solid deuterium[J].Journal of Experimental and Theoretical Physics Letters, 2002, 76(7):433-435.  doi: 10.1134/1.1528696
[33] BORISKOV G V, BYKOV A I, IL'KAEV R I, et al.Shock-wave compression of solid deuterium at a pressure of 120 GPa[J].Doklady Physics, 2003, 48(10):553-555.  doi: 10.1134/1.1623535
[34] BORISKOV G V, BYKOV A I, IL'KAEV R I.Shock compression of liquid deuterium up to 109 GPa[J].Physical Review B, 2005, 71:092104.  doi: 10.1103/PhysRevB.71.092104
[35] GRISHECHKIN S K, GRUZDEV S K, GRYAZNOV V K, et al.Experimental measurements of the compressibility, temperature, and light absorption in dense shock-compressed gaseous deuterium[J].Journal of Experimental and Theoretical Physics Letters, 2004, 80(6):398-404.  doi: 10.1134/1.1830656
[36] DA SILVA L B, CELLIERS P, COLLINS G W, et al.Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa(2 Mbar)[J].Physical Review Letters, 1997, 78(3):483-486.  doi: 10.1103/PhysRevLett.78.483
[37] HICKS D G, BOEGLY T R, CELLIERS P M, et al.Laser-driven single shock compression of fluid deuterium from 45 to 220 GPa[J].Physical Review B, 2009, 79(1):014112.  doi: 10.1103/PhysRevB.79.014112
[38] SANO T, OZAKI N, SAKAIYA T, et al.Laser-shock compression and Hugoniot measurements of liquid hydrogen to 55 GPa[J].Physical Review B, 2011, 83(5):054117.  doi: 10.1103/PhysRevB.83.054117
[39]

KERLEY G I.Equation of state for hydrogen and deuterium:SAND2003-3613.Sandia National Laboratories, 2003.

[40] LOUBEYRE P, BRYGOO S, EGGERT J, et al.Extended data set for the equation of state of warm dense hydrogen isotopes[J].Physical Review B, 2012, 86(14):144115.  doi: 10.1103/PhysRevB.86.144115
[41] BORISKOV G V, BYKOV A I.Isentropic compression of substances using ultra-high magnetic field:zero isotherms of protium and deuterium the pressure range up to~5 Mbar[J].Contributions to Plasma Physics, 2011, 51(4):339-348.  doi: 10.1002/ctpp.v51.4
[42] EGOROV N I, BORISKOV G V, BYKOV A I, et al.Use of pulsed radiography for investigation of equations of state of substances at megabar pressures[J].Contributions to Plasma Physics, 2011, 51(4):333-338.  doi: 10.1002/ctpp.v51.4
[43] MOCHALOVA M A, IL'KAEVA R I, FORTOV V E, et al.Quasi isentropic compressibility of deuterium and helium at pressures of 1 500-5 000 GPa[J].Journal of Experimental and Theoretical Physics, 2014, 119(1):146-161.  doi: 10.1134/S106377611406017X
[44] FORTOV V E, ILKAEV R I, ARININ V A, et al.Phase transition in a strongly nonideal deuterium plasma generated by quasi-isentropical compression at megabar pressures[J].Physical Review Letters, 2007, 99(18):185001.  doi: 10.1103/PhysRevLett.99.185001
[45] GU Y J, CHEN Q F, ZHENG J, et al.The equation of state, shock-induced molecule dissociation, and transparency loss for multi-compressed dense gaseous H2+D2 mixtures[J].Journal of Applied Physics, 2012, 111(1):013513.  doi: 10.1063/1.3675281
[46] HU S X, MILITZER B, GONCHAROV V N, et al.First-principles equation-of-state table of deuterium for inertial confinement fusion applications[J].Physical Review B, 2011, 84(22):224109.  doi: 10.1103/PhysRevB.84.224109
[47] LIU H F, SONG H F, ZHANG Q L, et al.Validation for equation of state in wide regime:copper as prototype[J].Matter and Radiation at Extremes, 2016, 1(2):123-131.  doi: 10.1016/j.mre.2016.03.002
[48] BECKER A, LORENZEN W, FORTNEY J J, et al.Ab-initio equations of state for hydrogen(H-REOS.3)and helium(He-REOS.3)and their implications for the interior of brown dwarfs[J].The Astrophysical Journal Supplement Series, 2014, 215(2):1-21.
[49] SAUMON D, CHABRIER G.Fluid hydrogen at high density:pressure dissociation[J].Physical Review A, 1991, 44:5122-5141.  doi: 10.1103/PhysRevA.44.5122
[50] SAUMON D, CHABRIER G.Fluid hydrogen at high density:pressure ionization[J].Physical Review A, 1992, 46:2084-2100.  doi: 10.1103/PhysRevA.46.2084
[51] LI Q, LIU H F, ZHANG G M.The thermodynamical instability induced by pressure ionization in fluid Helium[J].Physics of Plasmas, 2016, 23(11):112709.  doi: 10.1063/1.4968828
[52]

MARX D, HUTTER J.Ab-initio molecular dynamics:basic theory and advanced methods[M].Cambridge, England:Cambridge University Press, 2009.

[53] FOULKES W M C, MITAS L, NEEDS R J, et al.Quantum Monte Carlo simulations of solids[J].Reviews of Modern Physics, 2001, 73(1):33-83.
[54] SILVERA I F, GOLDMAN V V.The isotropic intermolecular potential for H2 and D2 in the solid and gas phases[J].The Journal of Chemical Physics, 1978, 69(9):4209-4213.  doi: 10.1063/1.437103
[55] ROSS M, REE F H, YOUNG D A.The equation of state of molecular hydrogen at very high density[J].The Journal of Chemical Physics, 1983, 79(3):1487-1494.  doi: 10.1063/1.445939
[56] JURANEK H, REDMER R.Self-consistent fluid variational theory for pressure dissociation in dense hydrogen[J].The Journal of Chemical Physics, 2000, 112(8):3780-3786.  doi: 10.1063/1.480939
[57] JURANEK H, SCHWARZ V, REDMER R.Equation-of-state for hydrogen and helium in the chemical picture[J].Journal of Physics A:Mathematical and General, 2003, 36(22):6181-6185.  doi: 10.1088/0305-4470/36/22/346
[58] LIU H F, LIU W S, ZHANG W X, et al.Equations of state of H2 and D2[J].Journal of Physics Condensed Matter, 2002, 14(44):11401-11404.  doi: 10.1088/0953-8984/14/44/489
[59] ROSS M.Linear-mixing model for shock-compressed liquid deuterium[J].Physical Review B, 1998, 58(2):669-677.
[60] CHEN Q F, CAI L C, CHEN D Q, et al.Pressure dissociation of dense hydrogen[J].Chinese Physics, 2005, 14(10):2077-2082.  doi: 10.1088/1009-1963/14/10/025
[61] LI Q, LIU H F, ZHANG G M, et al.Response to "Comment on 'The thermodynamical instability induced by pressure ionization in fluid helium'"[J].Physics of Plasmas, 2017, 24(6):064702.  doi: 10.1063/1.4984999
[62] 李琼, 刘海风, 张弓木, 等.模拟退火算法在化学自由能模型中的应用[J].计算物理, 2018.Doi:10.19596/jswl.cnki.1001-246x.2018-7853.
[63] STOLZMANN W, BLÖCKER T.Thermodynamical properties of stellar matter Ⅰ.equation of state for stellar interiors[J].Astronomy and Astrophysics, 1996, 314:1024-1040.
[64] BORN M, OPPENHEIMER J R.Zur Quantenthoried der Molekeln[J].Annalen der Physik, 1927, 84(20):457-484.
[65] HARTREE D R.The wave mechanics of an atom with a non-coulomb central field.Part Ⅱ.some results and discussion[J].Mathematical Proceedings of the Cambridge Philosophical Society, 1928, 24(1):111-132.  doi: 10.1017/S0305004100011920
[66] FOCK V.Näaherungs methode zur Lösung des quanten mechanischen Mehrkörperproblems[J].Zeitschrift für Physik, 1930, 61(1/2):126-148.
[67]

Martin R M.Electronic structure:basic theory and practical methods[M].Cambridge, England:Cambridge University Press, 2004.

[68]

谢希德, 陆栋.固体能带理论[M].上海:复旦大学出版社, 1998.

[69] KOHN W, SHAM L J.Self-consistent equations including exchange and correlation effects[J].Physical Review, 1965, 140(4A):A1133.  doi: 10.1103/PhysRev.140.A1133
[70] KOHN W.Nobel lecture electronic structure of matter-wave functions ans density functionals[J].Reviews of Modern Physics, 1998, 71(5):1253-1266.
[71] HERMA F, VAN DYKE J P, ORTENBURGER I B.Improved statistical exchange approxi-mation for inhomogeneous many-electron systems[J].Physical Review Letters, 1969, 22(16):807-811.  doi: 10.1103/PhysRevLett.22.807
[72]

LABANOWSKI J L, ANDZELM J W.Density functional methods in chemistry[M].New York:Springer Verlag, 1991.

[73] JUAN Y M, KAXIRAS E.Application of gradient corrections to density functional theory for atoms and solids[J].Physical Review B, 1993, 48(20):14944.  doi: 10.1103/PhysRevB.48.14944
[74] LANGRETH D C, PERDEW J P.Theory of nonuniform electronic systems.Ⅰ.analysis of the gradient approximation and a generalization that works[J].Physical Review B, 1980, 21(12):5469-5493.
[75] PERDEW J P, BURKE K, ERNZERHOF M.Generalized gradient approximation made simple[J].Physical Review Letters, 1996, 77(18):3865-3868.  doi: 10.1103/PhysRevLett.77.3865
[76] PERDEW J P, WANG Y.Accurate and simple analytic representation of the electron gas correlation energy[J].Physical Review B, 1992, 45(23):13244.  doi: 10.1103/PhysRevB.45.13244
[77] PERDEW J P, CHEVARY J A, VOSKO S H, et al.Atoms, moleules, solids, and surfaces:applications of the generalized gradient approximation for exchange and correlation[J].Physical Review B, 1992, 46(11):6671-6687.  doi: 10.1103/PhysRevB.46.6671
[78] DION M, RYDBERG H, SCHRÖDER E, et al.Van der Waals density functional for general geometries[J].Physical Review Letters, 2004, 92(24):246401.  doi: 10.1103/PhysRevLett.92.246401
[79] LEE K, MURRAY E D, KONG L, et al.Higher-accuracy van der Waals density functional[J].Physical Review B, 2010, 82(8):081101.  doi: 10.1103/PhysRevB.82.081101
[80] IHM J, ZUNGER A, COHEN M L.Momentum-space formalism for the total energy of solids[J].Journal of Physics C:Solid State Physics, 1979, 12(21):4409-4422.  doi: 10.1088/0022-3719/12/21/009
[81] PAYNE M C, TETER M P, AHAN D C, et al.Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients[J].Reviews of Modern Physics, 1992, 64(4):1045-1097.  doi: 10.1103/RevModPhys.64.1045
[82] SLATER J C, KOSTER G F.Simplified LCAO method for the periodic potential problem[J].Physical Review, 1954, 94(6):1498-1524.  doi: 10.1103/PhysRev.94.1498
[83] HERRING C, HILL A G.The theoretical constitution of metallic beryllium[J].Physical Review, 1940, 58(2):132-162.  doi: 10.1103/PhysRev.58.132
[84]

HERMAN F, KILLMAN S.Atomic structure calculation[M].Englewood Cliffs, New Jersey:Prentice-Hall Inc., 1963.

[85] ANDERSON O K.Linear methods in band theory[J].Physical Review B, 1975, 12(8):3060-3083.  doi: 10.1103/PhysRevB.12.3060
[86]

SKIVER H L.The LMTO method[M].Heidelberg:Springer-Verlag, 1984.

[87] HAMANN D R, SCHLUTER M, Chiang C.Norm-conserving pseudopotentials[J].Physical Review Letters, 1979, 43(20):1494-1497.  doi: 10.1103/PhysRevLett.43.1494
[88] BAICHELET G B, HAMANN D R, SCHLUTER M.Pseudopotentials that work:from H to Pu[J].Physical Review B, 1982, 26(8):4199-4228.  doi: 10.1103/PhysRevB.26.4199
[89] BLOCHL P E.Projector augmented wave method[J].Physical Review B, 1994, 50(24):17953-19979.  doi: 10.1103/PhysRevB.50.17953
[90] HOLZWARTH N A W, TACKETT A R, MATTHEWS G E.A projector augmented wave (PAW) code for electronic structure calculations.Part Ⅰ:atompaw for generating atom-centered functions.computer physics communications[J].Computer Physics Communications, 2001, 135(3):329-347.  doi: 10.1016/S0010-4655(00)00244-7
[91] VANDERBILT D.Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J].Physical Review B, 1990, 41(11):7892-7895.  doi: 10.1103/PhysRevB.41.7892
[92] LAASONEN K, CAR R, LEE C, et al.Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics[J].Physical Review B, 1991, 43(8):6796-6799.  doi: 10.1103/PhysRevB.43.6796
[93] KRESSE G, HAFNER J.Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements[J].Journal of Physics Condensed Matter, 1994, 6(40):8245-8257.  doi: 10.1088/0953-8984/6/40/015
[94]

HELLMANN H.Einfuhrung in die Quantumchemie[M].Leipzig:Franz Duetsche, 1937.

[95] FEYNMAN R P.Forces in molecules[J].Physical Review, 1939, 56(4):340-343.  doi: 10.1103/PhysRev.56.340
[96]

MARTIN R M.Electronic structure basic theory and practical methods[J].Cambridge University Press, 2004.

[97] CAR R, PARRINELLO M.Unified approach for molecular dynamics and density-functional theory[J].Physical Review Letters, 1985, 55(22):2471-2474.  doi: 10.1103/PhysRevLett.55.2471
[98] MARX D, HUTTE J.Modern methods and algorithms of quantum chemistry[J].NIC Series, 2000, 1:301-449.
[99] MERMIN N D.Thermal properties of the inhomogeneous electron gas[J].Physical Review, 1965, 137(5A):A1441-A1443.  doi: 10.1103/PhysRev.137.A1441
[100] KRESSE G, HAFNER J.Ab-initio molecular dynamics for liquid metals[J].Physical Review B, 1993, 48(17):13115-13118.  doi: 10.1103/PhysRevB.48.13115
[101] GONZE X, BEUKEN J M, CARACAS R, et al.First-principles computation of material properties:the ABINIT software project[J].Computational Materials Science, 2002, 25(3):478-492.  doi: 10.1016/S0927-0256(02)00325-7
[102] GONZE X, RIGNANESE G M, VERSTRAETE M, et al.A brief introduction to the ABINIT software package[J].Zeitschrift für Kristallographie-Crystalline Materials, 2005, 220(5/6):558-562.
[103] GONZE X, AMADON B, ANGLADE P M, et al.ABINIT:first-principles approach to material and nanosystem properties[J].Computer Physics Communications, 2009, 180(12):2582-2615.  doi: 10.1016/j.cpc.2009.07.007
[104]

ABINIT. (2018-06-10). http://www.abinit.org.

[105]

GYGI F. The first-principles MD code JEEP1. 6. 6. Lawrence Livermore National Laboratory, 1999-2001.

[106]

QBOX. (2018-07-16). http://qboxcode.org.

[107] LAMBERT F, CLÉROUIN J, MAZEVET S.Structural and dynamical properties of hot dense matter by a thomas-fermi-dirac molecular-dynamics[J].Europhysics Letters, 2006, 75(5):681-687.  doi: 10.1209/epl/i2006-10184-7
[108] MAZEVET S, LAMBERT F, BOTTIN F, et al.Ab-initio molecular-dynamics simulations of dense boron plasmas up to the semiclassical Thomas-Fermi regime[J].Physical Review E, 2007, 2007, 75:056404.  doi: 10.1103/PhysRevE.75.056404
[109] LAMBERT F, CLEROUIN J, DANEL J F, et al.Direct verification of mixing rules in the hot and dense regime[J].Physical Review E, 2008, 77:026402.  doi: 10.1103/PhysRevE.77.026402
[110] CEPERLEY D M.Path-integral calculations of normal liquid 3He[J].Physical Review Letters, 1992, 69(2):331-334.  doi: 10.1103/PhysRevLett.69.331
[111] TROTTER H.On the product of semi-groups of operators[J].Proceedings of the American Mathematical Society, 1959, 10(4):545-551.  doi: 10.1090/S0002-9939-1959-0108732-6
[112] MAGRO W R, CEPERLEY D M, PIERLEONI C, et al.Molecular dissociation in hot, dense hydrogen[J].Physical Review Letters, 1996, 76(8):1240-1243.
[113] MILITZER B, CEPERLEY D M.Path integral monte carlo calculation of the deuterium hugoniot[J].Physical Review Letters, 2000, 85(9):1890-1893.  doi: 10.1103/PhysRevLett.85.1890
[114] MILITZER B, CEPERLEY D M.Path integral Monte Carlo simulation of the low-density hydrogen plasma[J].Physical Review, 2001, 63(2):066404.
[115] MILITZER B, CEPERLEY D M, KRESS J D, et al.Calculation of a deuterium double shock hugoniot from ab initio simulations[J].Physical Review Letters, 2001, 87(27):275502.  doi: 10.1103/PhysRevLett.87.275502
[116] FILINOV V S, BONITZ M, LEVASHOV P R, et al.Plasma phase transition in hydrogen and electron-hole plasmas[J].Contributions to Plasma Physics, 2003, 43(5/6):290-294.
[117] FILINOV V S, BONITZ M, EBELING W, et al.Thermodynamics of hot dense H-plasmas:path integral Monte Carlo simulations and analytical approximations[J].Plasma Physics & Controlled Fusion, 2001, 43(6):743-759.
[118] FILINOV V S, LEVASHOV P R, BONITZ M, et al.Calculation of the shock Hugoniot of deuterium at pressures above 1 Mbar by the path-integral Monte Carlo method[J].Plasma Physics Reports, 2005, 31(8):700-704.  doi: 10.1134/1.2031631
[119] 张其黎, 刘海风, 李琼, 等.氢状态方程的路径积分蒙特卡洛研究[J].计算物理, 2018.Doi:10.19596/jswl.cnki.1001-246x.2018-7855.
[120] PIERLEONI C, CEPERLEY D M.The coupled electron-ion Monte Carlo method[J].Lecture Notes in Physics, 2006, 703(1):641-683.
[121] PIERLEONI C, CEPERLEY D M, HOLZMANN M.Coupled electron-ion Monte Carlo calculations of dense metallic hydrogen[J].Physical Review Letters, 2004, 93(14):146402.  doi: 10.1103/PhysRevLett.93.146402
[122] CAO J, BERNE B J.A Born-Oppenheimer approximation for path integrals with an application to electron solvation in polarizable fluids[J].The Journal of Chemical Physics, 1993, 99(4):2902-2916.  doi: 10.1063/1.465198
[123] MCMILLAN W L.Ground state of liquid He4[J].Physical Review, 1965, 138(2A):442-451.  doi: 10.1103/PhysRev.138.A442
[124] CEPERLEY D M, CHESTER G V, KALOS M H.Monte Carlo simulation of a many-fermion study[J].Physical Review B, 1977, 16(16):3081-3099.
[125] FOULKES W M C, MITAS L, NEEDS R J, et al.Quantum Monte Carlo simulations of solids[J].Reviews of Modern Physics, 2001, 73(1):33-83.  doi: 10.1103/RevModPhys.73.33
[126] MORALES M A, PIERLEONI C, CEPERLEY D M.Equation of state of metallic hydrogen from coupled electron-ion Monte Carlo simulations[J].Physical Review E, 2010, 81(1):021202.
[127] TUBMAN N M, LIBERATORE E, PIERLEONI C, et al.Molecular-atomic transition along the deutrium Hugoniot curve with coupled electron-ion Monte Carlo simulations[J].Physical Review Letters, 2015, 115(4):45301.  doi: 10.1103/PhysRevLett.115.045301
[128] 李名锐, 周刚, 李志康, 等.液氘单次冲击压缩的QMC模拟研究[J].高压物理学报, 2015, 29(1):1-8.
LI M R, ZHOU G, LI Z K, et al.Single shock compression of fluid deuterium by QMC simulation[J].Chinese Journal of High Pressure Physics, 2015, 29(1):1-8.
[129] 耿华运, 孙毅.氢的高压奇异结构与金属化[J].高压物理学报, 2018, 32(2):020101.
GENG H Y, SUN Y.On the novel structure and metallization of hydrogen under high pressure[J].Chinese Journal of High Pressure Physics, 2018, 32(2):020101.
[130]

KERLEY G I.A theoretical equation of state for deuterium:No.LA-4776.Los Alamos, New Mexico:Los Alamos Scientific Laboratory, 1972.

[131] SAUMON D, CHABRIER G, VAN HORN H M.An equation of state for low-mass stars and giant planets[J].The Astrophysical Journal Supplement Series, 1995, 99:713-741.  doi: 10.1086/192204
[132] EBELING W.Coulomb interaction and ionization equilibrium in partially ionized plasmas[J].Physica, 1969, 43(2):293-306.  doi: 10.1016/0031-8914(69)90009-3
[133] DA SILVA L B, CELLIERS P, COLLINS G W, et al.Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa(2 Mbar)[J].Physical Review Letters, 1997, 78(78):483-486.
[134] YOUNG D A, COREY E M.A new global equation of state model for hot dense matter[J].Journal of Applied Physics, 1995, 78(6):3748-3755.  doi: 10.1063/1.359955
[135] LENOSKY T J, KRESS J D, COLLINS L A.Molecular-dynamics modeling of the Hugoniot of shocked liquid deuterium[J].Physical Review B, 1997, 56(9):5164-5169.  doi: 10.1103/PhysRevB.56.5164
[136] GALLI G, HOOD R Q, HAZI A U, et al.Ab-initio simulations of compressed liquid deuterium[J].Physical Review B, 2000, 61(2):909-912.  doi: 10.1103/PhysRevB.61.909
[137] BAGNIER S, BLOTTIAU P, CLÉROUIN J.Local-spin-density-approximation molecular-dynamics simulations of dense deuterium[J].Physical Review E, 2001, 63(1):015301.
[138] LENOSKY T J, BICKHAM S R, KRESS J D, et al.Density-functional calculations of the Hugoniot of shocked liquid deuterium[J].Physical Review B, 2000, 61(1):1-4.
[139] GYGI F, GALLI G.Electronic excitations and the compressibility of deuterium[J].Physical Review B, 2002, 65(22):392-397.
[140] DESJARLAIS M P.Density-functional calculations of the liquid deuterium Hugoniot, reshock, and reverberation timing[J].Physical Review B, 2003, 68(6):575-580.
[141] BONEV S A, MILITZER B, GALLI G.Ab initio simulations of dense liquid deuterium:comparison with gas-gun shock-wave experiments[J].Physical Review B, 2004, 69(1):1985-1988.
[142] DANEL J F, KAZANDJIAN L, PIRON R.Equation of state of warm dense deuterium and its isotopesfrom density-functional theory molecular dynamics[J].Physical Review E, 2016, 93(4):043210.  doi: 10.1103/PhysRevE.93.043210
[143] KARASIEV V V, CALDERÃIN L, TRICKEY S B.Importance of finite-temperature exchange correlation for warm dense matter calculations[J].Physical Review E, 2016, 93(6):063207.  doi: 10.1103/PhysRevE.93.063207
[144] KARASIEV V V, CHAKRABORTY D, SHUKRUTO O A, et al.Nonempirical generalized gradient approximation free-energy functional for orbital-free simulations[J].Physical Review B, 2013, 88(16):161108.  doi: 10.1103/PhysRevB.88.161108
[145] KNUDSON M D, DESJARLAIS M P, BECKER A, et al.Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium[J].Science, 2015, 348(6242):1455.  doi: 10.1126/science.aaa7471
[146] COLLINS L A, BICKHAM S R, KRESS J D.Dynamical and optical properties of warm dense hydrogen[J].Physical Review B, 2001, 63(18):184110.  doi: 10.1103/PhysRevB.63.184110
[147] HOLST B, REDMER R, DESJARLAIS M.Thermophysical properties of warm dense hydrogen using quantum molecular dynamics simulations[J].Physical Review B, 2008, 77(18):184201.  doi: 10.1103/PhysRevB.77.184201
[148] CAILLABET L, MAZEVET S, LOUBEYRE P.Multiphase equation of state of hydrogen from ab initio calculations in the range 0.2 to 5 g/cc up to 10 eV[J].Physical Review B, 2011, 83:094101.  doi: 10.1103/PhysRevB.83.094101
[149]

刘海风, 张弓木. 液氘第一原理分子动力学模拟与实用物态方程(内部报告). 2004.

[150] 张其黎, 张弓木, 赵艳红, 等.氘、氦及其混合物状态方程第一原理研究[J].物理学报, 2015, 64(9):094702.
ZHANG Q L, ZHANG G M, ZHAO Y H, et al.Study of the equation of states for deuterium, helium, and their mixture[J].Acta Physica Sinica, 2015, 64(9):094702.
[151] WANG C, ZHANG P.Wide range equation of state for fluid hydrogen from density function theory[J].Physics of Plasmas, 2013, 20(9):092703.  doi: 10.1063/1.4821839
[152] PIERLEONI C, CEPERLEY D M, BERNU B, et al.Equation of state of the hydrogen plasma by path intergral monte carlo simulation[J].Physical Review Letters, 1994, 73(16):2145-2149.  doi: 10.1103/PhysRevLett.73.2145
[153] FILINOV V S, FORTOV V E, BONITZ M, et al.Pair distribution functions of dense partially ionized hydrogen[J].Physics Letters A, 2000, 274(5):228-235.
[154] FILINOV V S, FORTOV V E, BONITZ M, et al.Fermionic path integral Monte Carlo results for the uniform electron gas at finite temperature[J].Physical Review E, 2015, 91(3):033108.  doi: 10.1103/PhysRevE.91.033108
[155] BEZKROVNIY V, FILINOV V S, KREMP D, et al.Monte Carlo results for the hydrogen Hugoniot[J].Physical Review E, 2004, 70:057401.  doi: 10.1103/PhysRevE.70.057401
[156] RILLO G, MORALES M A, CEPERLEY D M, et al.Coupled electron-ion Monte Carlo simulation of hydrogen molecular crystals[J].Journal of Chemical Physics, 2018, 148(10):102314.  doi: 10.1063/1.5001387