[1] Seagle C T, Davis J P, Martin M R, et al.  Shock-ramp compression: Ramp compression of shock-melted tin[J]. Appl Phys Lett, 2013, 102(24): 244104-.   doi: 10.1063/1.4811745
[2] Davis J P.  Experimental measurement of the principal isentrope for aluminum 6061-T6 to 240 GPa[J]. J Appl Phys, 2006, 99: 103512-.   doi: 10.1063/1.2196110
[3] 张红平, 王桂吉, 李牧, 等.  准等熵压缩下金属钽的屈服强度分析[J]. 高压物理学报, 2011, 25(4): 321-326.
Zhang H P, Wang G J, Li M, et al.  Yield strength analysis of tantalum in quasi-isentropic compression[J]. Chinese Journal of High Pressure Physics, 2011, 25(4): 321-326.
[4] Ding J L, Asay J R.  Material characterization with ramp wave experiments[J]. J Appl Phys, 2007, 101(7): 073517-.   doi: 10.1063/1.2709878
[5] Smith R F, Eggert J H, Jankowski A, et al.  Stiff response of aluminum under ultrafast shockless compression to 110 GPa[J]. Phys Rev Lett, 2007, 98(6): 065701-.   doi: 10.1103/PhysRevLett.98.065701
[6]

Davis J P. Charice 1.0: An IDL application for characteristics-based inverse analysis of isentropic compression experiments, SAND 2007-4984[R]. Albuquerque: Sandia National Laboratories, 2007.

[7] Wang G J, Zhao J H, Zhang H P, et al.  Advances in quasi-isentropic compression experiments at institute of fluid physics of CAEP[J]. Eur Phys J Special Topics, 2012, 206(1): 163-172.   doi: 10.1140/epjst/e2012-01597-y
[8] Steinberg D J, Lund C M.  A constitutive model for strain rates from 10-4 to 106 s-1[J]. J Appl Phys, 1989, 65(4): 1528-1533.   doi: 10.1063/1.342968
[9] Steinberg D J.  A rate-dependent constitutive model for molybdenum[J]. J Appl Phys, 1993, 74(6): 3827-3831.   doi: 10.1063/1.355316