[1] 孙承纬, 赵剑衡, 王桂吉, 等.  磁驱动准等熵平面压缩和超高速飞片发射实验技术原理、装置及应用[J]. 力学进展, 2012, 42(2): 206-218.
Sun C W, Zhao J H, Wang G J, et al.  Progress in magnetic loading techniques for isentropic compression experiments and ultra-high velocity flyer launching[J]. Advances in Mechanics, 2012, 42(2): 206-218.
[2] Hall C A, Knudson M D, Asay J R, et al.  High velocity flyer plate launch capability on the Sandia Z accelerator[J]. Int J Impact Eng, 2001, 26: 275-287.   doi: 10.1016/S0734-743X(01)00088-4
[3] Hereil P L, Lassalle F, Avrillaud G.  GEPI: An ice generator for dynamic material characterisation and hypervelocity impact[J]. AIP Conf Proc, 2004, 706: 1209-1212.   doi: 10.1063/1.1780455
[4] Ao T, Asay J R, Chantrenne S, et al.  A compact strip-line pulsed power generator for isentropic compression experiments[J]. Rev Sci Instrum, 2008, 79(1): 013903-.   doi: 10.1063/1.2827509
[5] Lemke R W, Knudson M D, Davis J P.  Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator[J]. Int J Impact Eng, 2011, 38(6): 480-485.   doi: 10.1016/j.ijimpeng.2010.10.019
[6] 赵剑衡, 孙承纬, 谭福利, 等.  一维平面磁驱动等熵加载发射飞片技术[J]. 爆炸与冲击, 2005, 25(4): 303-308.
Zhao J H, Sun C W, Tan F L, et al.  Launch technique for isentropic compression flyer plates magnetically driven by using fast pulsed power[J]. Explosion and Shock Waves, 2005, 25(4): 303-308.
[7]

王桂吉, 王青松, 赵剑衡, 等. 10 km/s超高速宏观飞片发射技术研究进展[C]//第6届全国空间碎片学术交流会.成都, 2011: 551-559.

Wang G J, Wang Q S, Zhao J H, et al. Research progress of 10 km/s hypervelocity macro-flyer launch technology[C]//Proceedings of the 6th National Conference on Space Debris. Chengdu, 2011: 551-559. (in Chinese)

[8] Lemke R W, Knudson M D, Bliss D E, et al.  Magnetically accelerated, ultrahigh velocity flyer plates for shock wave experiments[J]. J Appl Phys, 2005, 98(7): 073530-.   doi: 10.1063/1.2084316
[9] Lemke R W, Knudson M D, Robinson A C, et al.  Self-consistent, two-dimensional, magnetohydrodynamic simulations of magnetically driven flyer plates[J]. Phys Plasmas, 2003, 10(5): 1867-1874.   doi: 10.1063/1.1557530
[10]

Le Blanc G, Petit J, Chanal P Y, et al. Modelling the dynamic magneto-thermomechanical behaviour of materials using a multi-phase EOS[C]//The 7th European LS-DYNA Conference. Salzburg, Austria, 2009.

[11] 王刚华, 孙承纬, 赵剑衡, 等.  磁驱动平面飞片的一维磁流体力学计算[J]. 爆炸与冲击, 2008, 28(3): 261-264.
Wang G H, Sun C W, Zhao J H, et al.  One-dimensional, magnetohydrodynamic simulations of magnetically driven flyer plates[J]. Explosion and Shock Waves, 2008, 28(3): 261-264.
[12] 王桂吉, 蒋吉昊, 孙承纬, 等.  磁驱动飞片的一维磁流体动力学数值研究[J]. 计算力学学报, 2008, 25(6): 776-781.
Wang G J, Jiang J H, Sun C W, et al.  One dimensional magneto-hydrodynamic simulation of magnetically driven flyer plates[J]. Chinese Journal of Computational Mechanics, 2008, 25(6): 776-781.
[13]

Le Blanc G, Chanal P Y, Herei P L, et al. Ramp wave compression in a copper strip line: Comparison between MHD numerical simulations(LS-DYNA)and experimental results(GEPI device)[C]//The 10th International LS-DYNA Users Conference. Dearborn, USA, 2008.

[14]

Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics. Hague, Netherlands, 1983.

[15] Steinberg D J, Cochran S G, Guinan M W.  A constitutive model for metals applicable at high-strain rate[J]. J Appl Phys, 1980, 51(3): 1498-1504.   doi: 10.1063/1.327799
[16] 孙承纬.  磁驱动等熵压缩和高速飞片的实验技术[J]. 爆轰波与冲击波, 2005, (3): 125-138.
Sun C W.  Experimental techniques of magnetically driven isentropic compression and high velocity flyer plates[J]. Detonation and Shock Waves, 2005, (3): 125-138.