[1] |
CHERNIAK D J, WATSON E B, THOMAS J B.
Diffusion of helium in zircon and apatite[J]. Chemical GeologyChemical Geology, 2009, 268(1): 155-166.
|
[2] |
REICH M, EWING R C, EHLERS T A, et al.
Low-temperature anisotropic diffusion of helium in zircon: implications for zircon (U–Th)/He thermochronometry[J]. Geochimica et Cosmochimica ActaGeochimica et Cosmochimica Acta, 2007, 71(12): 3119-3130.
doi: 10.1016/j.gca.2007.03.033
|
[3] |
REINERS P W.
Zircon (U-Th)/He thermochronometry[J]. Reviews in Mineralogy GeochemistryReviews in Mineralogy Geochemistry, 2005, 58(1): 151-179.
doi: 10.2138/rmg.2005.58.6
|
[4] |
CHERNIAK D J, AMIDON W, HOBBS D, et al.
Diffusion of helium in carbonates: effects of mineral structure and composition[J]. Geochimica et Cosmochimica ActaGeochimica et Cosmochimica Acta, 2015, 165: 449-465.
doi: 10.1016/j.gca.2015.06.033
|
[5] |
COPELAND P, WATSON E B, URIZAR S C, et al.
Alpha thermochronology of carbonates[J]. Geochimica et Cosmochimica ActaGeochimica et Cosmochimica Acta, 2007, 71(18): 4488-4511.
doi: 10.1016/j.gca.2007.07.004
|
[6] |
COPELAND P, COX K, WATSON E B.
The potential of crinoids as (U+Th+Sm) /He thermochronometers[J]. Earth and Planetary Science LettersEarth and Planetary Science Letters, 2015, 42: 1-10.
|
[7] |
CROS A, GAUTHERON C, PAGEL M, et al.
4He behavior in calcite filling viewed by (U-Th)/He dating, 4He diffusion and crystallographic studies[J]. Geochimica et Cosmochimica ActaGeochimica et Cosmochimica Acta, 2014, 125: 414-432.
doi: 10.1016/j.gca.2013.09.038
|
[8] |
AMIDON W H, HOBBS D, HYNEK S A, et al.
Retention of cosmogenic 3He in calcite[J]. Quaternary GeochronologyQuaternary Geochronology, 2015, 27: 172-184.
doi: 10.1016/j.quageo.2015.03.004
|
[9] |
BENGTSON A, EWING R C, BECKER U.
He diffusion and closure temperatures in apatite and zircon: a density functional theory investigation[J]. Geochimica et Cosmochimica ActaGeochimica et Cosmochimica Acta, 2012, 86: 228-238.
doi: 10.1016/j.gca.2012.03.004
|
[10] |
WANG K, BRODHOLT J, LU X.
Helium diffusion in olivine based on first principles calculations[J]. Geochimica et Cosmochimica ActaGeochimica et Cosmochimica Acta, 2015, 156: 145-153.
doi: 10.1016/j.gca.2015.01.023
|
[11] |
BALOUT H, ROQUES J, GAUTHERON C, et al.
Helium diffusion in pure hematite (α-Fe3O3) for thermochronometric applications: a theoretical multi-scale study[J]. Computational and Theoretical ChemistryComputational and Theoretical Chemistry, 2017, 1099: 21-28.
doi: 10.1016/j.comptc.2016.11.001
|
[12] |
SONG Z, WU H, SHU S, et al.
A first-principles and experimental study of helium diffusion in periclase MgO[J]. Physics and Chemistry of MineralsPhysics and Chemistry of Minerals, 2018, 45(7): 641-654.
doi: 10.1007/s00269-018-0949-y
|
[13] |
DODSON M H.
Closure temperatures in cooling geological and petrological systems[J]. Contributions to Mineralogy PetrologyContributions to Mineralogy Petrology, 1973, 40(3): 259-274.
doi: 10.1007/BF00373790
|
[14] |
HOHENBERG P, KOHN W.
Inhomogenous electron gas[J]. Physical ReviewPhysical Review, 1964, 136: 864-871.
doi: 10.1103/PhysRev.136.B864
|
[15] |
KOHN W, SHAM L J.
Quantum density oscillations in an inhomogeneous electron gas[J]. Physical ReviewPhysical Review, 1965, 137: 1697-1705.
doi: 10.1103/PhysRev.137.A1697
|
[16] |
KRESSE G, FURTHMULLER J.
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials ScienceComputational Materials Science, 1996, 6(1): 15-50.
doi: 10.1016/0927-0256(96)00008-0
|
[17] |
KRESSE G, HAFNER J.
Ab initio molecular dynamics for liquid-metals[J]. Physical Review BPhysical Review B, 1993, 47(1): 558-561.
doi: 10.1103/PhysRevB.47.558
|
[18] |
BLÖCHL P E.
Projected augmented-wave method[J]. Physical Review BPhysical Review B, 1996, 50(24): 17953-17979.
|
[19] |
KRESSE G, JOUBERT D.
From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review BPhysical Review B, 1999, 59(3): 1758-1775.
doi: 10.1103/PhysRevB.59.1758
|
[20] |
PERDEW J P, BURKE K, ERNZERHOF M.
Generalized gradient approximation made simple[J]. Physical Review LettersPhysical Review Letters, 1996, 77(18): 3865-3868.
doi: 10.1103/PhysRevLett.77.3865
|
[21] |
CHADI D J.
Special points for Brillouin-zone integrations[J]. Physical Review BPhysical Review B, 1977, 16(4): 1746-1747.
doi: 10.1103/PhysRevB.16.1746
|
[22] |
BRIK M G.
First-principles calculations of structural, electronic, optical and elastic properties of magnesite MgCO3 and calcite CaCO3[J]. Physica B: Condensed MatterPhysica B: Condensed Matter, 2011, 406(4): 1004-1012.
doi: 10.1016/j.physb.2010.12.049
|
[23] |
MALSEN E N, STRELTSOV V A, STRELTSOVA N R, et al.
X-ray study of the electron density in calcite, CaCO3[J]. Acta Crystallographica Section B: Structural ScienceActa Crystallographica Section B: Structural Science, 1993, 49(4): 636-641.
doi: 10.1107/S0108768193002575
|
[24] |
OGANOV A R, GLASS C W, ONO S.
High-pressure phases of CaCO3: crystal structure prediction and experiment[J]. Earth and Planetary Science LettersEarth and Planetary Science Letters, 2006, 241(1): 95-103.
|
[25] |
DICKENS B, BOWEN J S.
Refinement of the crystal of the aragonite phase of CaCO3[J]. Physics and Chemistry APhysics and Chemistry A, 1971, 75(1): 27-32.
|
[26] |
HENKELMAN G.
Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points[J]. Journal of Chemical PhysicsJournal of Chemical Physics, 2000, 113(22): 9978-9985.
doi: 10.1063/1.1323224
|
[27] |
VINEYARD G H.
Frequency factors and isotope effects in solid state rate processes[J]. Journal of Physics and Chemistry of SolidsJournal of Physics and Chemistry of Solids, 1957, 3(1/2): 121-127.
|
[28] |
BENDER M L.
Helium-uranium dating of corals[J]. Geochimica et Cosmochimica ActaGeochimica et Cosmochimica Acta, 1973, 37(5): 1229-1247.
doi: 10.1016/0016-7037(73)90058-6
|