[1] LEE J R, CHIA C C, KONG C W.  Review of pyroshock wave measurement and simulation for space systems[J]. Measurement, 2012, 45(4): 631-642.   doi: 10.1016/j.measurement.2011.12.011

HIMELBLAU H, KERN D L, MANNING J E, et al. Dynamic environment critical: NASA-HDBK-7005 [R]. Washington, DC: National Aeronautics and Space Administration, 2001.


ECSS. Space engineering-mechanical shock design and verification handbook: ECSS-E-HB-32-25A [R]. The Netherlands: European Space Agency, 2015.


ALEXANDER J E. A new method to synthesize a shock response spectrum compatible base acceleration to improve multi-degree of freedom system response [D]. Minneapolis, MN: University of Minnesota, 2015.

[5] HWANG J H, DURAN A.  Stochastic shock response spectrum decomposition method based on probabilistic definitions of temporal peak acceleration, spectral energy, and phase lag distributions of mechanical impact pyrotechnic shock test data[J]. Mechanical Systems and Signal Processing, 2016, 76: 424-440.
[6] CHONG S Y, LEE J R, KONG C W.  Shock response spectra reconstruction of pointwise explosive-induced pyroshock based on signal processing of laser shocks[J]. Shock and Vibration, 2014, 2014: 1-14.
[7] 杜志鹏, 汪玉, 杨洋, 等.  舰艇水下爆炸冲击信号拟合及应用[J]. 振动与冲击, 2010, 29(3): 182-184.   doi: 10.3969/j.issn.1000-3835.2010.03.044
DU Z P, WANG Y, YANG Y, et al.  Curve fit method for naval underwater explosion shock and its application[J]. Journal of Vibration and Shock, 2010, 29(3): 182-184.   doi: 10.3969/j.issn.1000-3835.2010.03.044
[8] 马道远, 庄方方, 徐振亮.  基于遗传算法的冲击响应谱时域合成方法[J]. 强度与环境, 2015, 42(5): 49-53.
MA D Y, ZHUANG F F, XU Z L.  Time-domain synthesis method for shock response spectrum based on genetic algorithm[J]. Structure and Enviroment Engineering, 2015, 42(5): 49-53.
[9] YE Z, LI Z, XIE M.  Some improvements on adaptive genetic algorithms for reliability-related applications[J]. Reliability Engineering & System Safety, 2010, 95(2): 120-126.
[10] SRINIVAS M, PATNAIK L M.  Adaptive probabilities of crossover and mutation in genetic algorithms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24(4): 656-667.   doi: 10.1109/21.286385
[11] YAN M, HU H, OTAKE Y, et al.  Improved adaptive genetic algorithm with sparsity constraint applied to thermal neutron CT reconstruction of two-phase flow[J]. Measurement Science and Technology, 2018, 29(5): 1-14.

BIOT M A. Transient oscillations in elastic systems [D]. Pasadena, CA: California Institute of Technology, 1932.

[13] LI B W, LI Q M.  Damage boundary of structural components under shock environment[J]. International Journal of Impact Engineering, 2018, 118: 67-77.   doi: 10.1016/j.ijimpeng.2018.04.002
[14] SMALLWOOD D O.  An improved recursive formula for calculating shock response spectra[J]. Shock and Vibration Bulletin, 1981, 51(2): 211-217.

ISO. Mechanical vibration and shock—signal processing—part 4: shock response spectrum analysis: ISO/WD18431-4-2007 [S]. Geneva, Switzerland: ISO, 2007.

[16] SMALLWOOD D O.  A family of transients suitable for reproduction on a shaker based on the cosm(x) window[J]. Journal of the Institute of Environmental Sciences and Technology, 2002, 45(1): 178-184.

SIAM N. Development of an efficient analysis method for prediction and structural dimensioning of space structures subjected to shock loading [D]. Luleå, Sweden: Luleå University of Technology, 2010.


DILHAN D, CIPOLLA V, GRZESKOWIAK H, et al. Pyroshock generation [C]//European Conference on Spacecraft Structures, Materials and Mechanical Testing. The Netherlands, 2005: 1–10.

[19] MONTI R, PAOLO G.  Dynamic load synthesis for shock numerical simulation in space structure design[J]. Acta Astronautica, 2017, 137: 222-231.   doi: 10.1016/j.actaastro.2017.04.023
[20] BAI X S, YAN W S, GE S S, et al.  An integrated multi-population genetic algorithm for multi-vehicle task assignment in a drift field[J]. Information Sciences, 2018, 453: 227-238.   doi: 10.1016/j.ins.2018.04.044