考虑温度效应的泡沫铝准静态压缩本构模型

李雪艳 李志斌 张舵

李雪艳, 李志斌, 张舵. 考虑温度效应的泡沫铝准静态压缩本构模型[J]. 高压物理学报, 2018, 32(4): 044103. doi: 10.11858/gywlxb.20170642
引用本文: 李雪艳, 李志斌, 张舵. 考虑温度效应的泡沫铝准静态压缩本构模型[J]. 高压物理学报, 2018, 32(4): 044103. doi: 10.11858/gywlxb.20170642
LI Xueyan, LI Zhibin, ZHANG Duo. Constitutive Model of Aluminum Foams Considering Temperature Effect under Quasi-Static Compression[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 044103. doi: 10.11858/gywlxb.20170642
Citation: LI Xueyan, LI Zhibin, ZHANG Duo. Constitutive Model of Aluminum Foams Considering Temperature Effect under Quasi-Static Compression[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 044103. doi: 10.11858/gywlxb.20170642

考虑温度效应的泡沫铝准静态压缩本构模型

doi: 10.11858/gywlxb.20170642
基金项目: 

湖南省自然科学基金 2017JJ3359

详细信息
    作者简介:

    李雪艳(1991-), 女, 硕士, 主要从事材料的动态力学性能研究.E-mail:15073146797@163.com

    通讯作者:

    李志斌(1985-), 男, 博士, 讲师, 主要从事材料的动态力学性能研究

  • 中图分类号: O347;TJ410

Constitutive Model of Aluminum Foams Considering Temperature Effect under Quasi-Static Compression

  • 摘要: 采用MTS材料试验机研究了不同密度(0.322~0.726g/cm3)的闭孔泡沫铝在温度范围25~500℃下的准静态压缩力学性能,得到了泡沫铝在不同温度下的单轴压缩应力-应变曲线,分析了密度以及温度对其力学行为的影响。利用Liu和Subhash提出的本构模型对不同密度泡沫铝的应力-应变曲线进行拟合,分析并确定了模型中各参数随密度变化的函数,再代入Liu-Subhash模型,得到了泡沫铝的准静态压缩本构模型。通过引入温度软化项对准静态压缩本构模型进行修正,建立了考虑温度效应的泡沫铝准静态压缩本构模型,对闭孔泡沫铝的工程应用具有指导意义。

     

  • 图  常温下不同密度泡沫铝的准静态应力-应变曲线

    Figure  1.  Quasi-static stress-strain curves of aluminum foam with different densities at room temperature

    图  常温下不同密度泡沫铝的应力-应变曲线拟合情况

    Figure  2.  Fitting of stress-strain curves of aluminum foam with different densities at room temperature

    图  常温下参数随密度的变化规律

    Figure  3.  Variation of parameters with density at room temperature

    图  不同温度下泡沫铝的准静态应力-应变曲线

    Figure  4.  Quasi-static stress-strain curves of aluminum foam at different temperatures

    图  不同温度下泡沫铝应力-应变曲线的拟合情况

    Figure  5.  Fitting of stress-strain curves of aluminum foam at different temperatures

    表  1  不同密度下的模型参数值

    Table  1.   Parameter values for different densities

    Density/(g·cm-3) Parameter
    p1 p2 p3 p4 p5
    0.322 3.08 86.09 86.22 -6.49 11.60
    0.481 5.98 90.83 90.74 -4.66 10.98
    0.639 9.31 91.20 90.89 -3.00 9.41
    0.726 12.01 92.04 92.14 -1.33 7.41
    下载: 导出CSV
  • [1] 刘培生, 李铁藩, 傅超.多孔金属材料的应用[J].功能材料, 2001, 32(1):12-15. http://www.cqvip.com/QK/72003x/201607/epub1000000248429.html

    LIU P S, LI T F, FU C.Application of porous metal materials[J].Functional Materials, 2001, 32(1):12-15. http://www.cqvip.com/QK/72003x/201607/epub1000000248429.html
    [2] 尚朝秋, 王应武.泡沫铝材料研究现状分析[J].云南冶金, 2016, 45(3):10-13. http://www.cqvip.com/QK/90321B/201603/669250357.html

    SHANG Z Q, WANG Y W.The research status analysis of aluminum foam material[J].Yunnan Metallurgy, 2016, 45(3):10-13. http://www.cqvip.com/QK/90321B/201603/669250357.html
    [3] CHEN C, LU T J.A phenomenological framework of constitutive modelling for incompressible and compressible elastic-plastic solids[J].International Journal of Solids and Structures, 2000, 37(52):7769-7786. doi: 10.1016/S0020-7683(00)00003-2
    [4] 王二恒, 虞吉林, 王飞, 等.泡沫铝材料准静态本构关系的理论和实验研究[J].力学学报, 2004, 36(6):673-679. http://mall.cnki.net/magazine/Article/LXXB200406004.htm

    WANG E H, YU J L, WANG F, et al.A theoretical and experimental study on the quasi-static constitutive model of aluminum foams[J].Acta Mechanica Sinica, 2004, 36(6):673-679. http://mall.cnki.net/magazine/Article/LXXB200406004.htm
    [5] WANG Z H, JING L, ZHAO L M.Elasto-plastic constitutive model of aluminum alloy foam subjected to impact loading[J].Transactions of Nonferrous Metals Society of China, 2011, 21(3):449-454. doi: 10.1016/S1003-6326(11)60735-8
    [6] HAKAMADA M, NOMURA T, YAMADA Y, et al.Compressive deformation behavior at elevated temperatures in a closed-cell aluminum foam[J].Materials Transactions, 2005, 46(7):1677-1680. doi: 10.2320/matertrans.46.1677
    [7] ALY M S.Behavior of closed cell aluminum foams upon compressive testing at elevated temperatures:experimental results[J].Materials Letters, 2007, 61(14):3138-3141. http://www.sciencedirect.com/science/article/pii/S0167577X06013206
    [8] CADY C M, Ⅲ G T G, LIU C, et al.Compressive properties of a closed-cell aluminum foam as a function of strain rate and temperature[J].Materials Science and Engineering A, 2001, 525(1):1-6. http://www.sciencedirect.com/science/article/pii/S0921509309007503
    [9] 习会峰, 刘逸平, 汤立群, 等.考虑温度效应的泡沫铝静态压缩本构模型[J].哈尔滨工程大学学报, 2013, 34(8):1000-1005. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgcdxxb201308010

    XI H F, LIU Y P, TANG L Q, et al.Constitutive model of aluminum foam with temperature effect under the quasi-static compression[J].Journal of Harbin Engineering University, 2013, 34(8):1000-1005. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgcdxxb201308010
    [10] 王鹏飞, 徐松林, 胡时胜.基于温度与应变率相互耦合的泡沫铝本构关系[J].高压物理学报, 2014, 28(1):23-28. doi: 10.11858/gywlxb.2014.01.004

    WANG P F, XU S L, HU S S.A constitutive relation of aluminum foam coupled with temperature and strain rate[J].Chinese Journal of High Pressure Physics, 2014, 28(1):23-28. doi: 10.11858/gywlxb.2014.01.004
    [11] LIU Q, SUBHASH G.A phenomenological constitutive model for foams under large deformations[J].Polymer Engineering and Science, 2004, 44(3):463-473. doi: 10.1002/(ISSN)1548-2634
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  6945
  • HTML全文浏览量:  2895
  • PDF下载量:  276
出版历程
  • 收稿日期:  2017-09-18
  • 修回日期:  2017-11-03

目录

    /

    返回文章
    返回