入口压力对天然气超声速液化特性的影响

边江 曹学文 杨文 于洪喜 尹鹏博

边江, 曹学文, 杨文, 于洪喜, 尹鹏博. 入口压力对天然气超声速液化特性的影响[J]. 高压物理学报, 2018, 32(3): 031101. doi: 10.11858/gywlxb.20170639
引用本文: 边江, 曹学文, 杨文, 于洪喜, 尹鹏博. 入口压力对天然气超声速液化特性的影响[J]. 高压物理学报, 2018, 32(3): 031101. doi: 10.11858/gywlxb.20170639
BIAN Jiang, CAO Xuewen, YANG Wen, YU Hongxi, YIN Pengbo. Influence of Inlet Pressure on Supersonic Liquefaction of Natural Gas Mixtures[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 031101. doi: 10.11858/gywlxb.20170639
Citation: BIAN Jiang, CAO Xuewen, YANG Wen, YU Hongxi, YIN Pengbo. Influence of Inlet Pressure on Supersonic Liquefaction of Natural Gas Mixtures[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 031101. doi: 10.11858/gywlxb.20170639

入口压力对天然气超声速液化特性的影响

doi: 10.11858/gywlxb.20170639
基金项目: 

国家重点研发计划专项 2016YFC0802301

国家自然科学基金 51274232

国家自然科学基金 51406240

山东省自然科学基金 ZR2014EEQ003

详细信息
    作者简介:

    边江(1992-), 男, 博士研究生, 主要从事天然气处理与加工技术研究.E-mail:bianjiang868@163.com

    通讯作者:

    曹学文(1966-), 男, 教授, 博士生导师, 主要从事天然气处理与加工、油气水多相流理论及应用、海底管道完整性管理等研究.E-mail:caoxw@upc.edu.cn

  • 中图分类号: TE642

Influence of Inlet Pressure on Supersonic Liquefaction of Natural Gas Mixtures

  • 摘要: 为研究入口压力对天然气混合物超声速液化特性的影响规律,建立了三维双组分天然气混合物超声速凝结流动数学模型,对Laval喷管内双组分混合物凝结流动进行了数值模拟,得出了沿Laval喷管轴向的参数分布,通过开展双可凝组分气体凝结相变实验,对比发现数值模拟与实验结果基本一致,说明了所建立的数学模型及计算方法的正确性。还研究了入口压力对甲烷-乙烷混合物超声速液化特性的影响,结果表明,保持Laval喷管入口温度及组成不变,增大入口压力,混合气体成核位置前移,成核率、平均液滴半径、液相质量分数均随之增大,即入口压力越大,混合气体在Laval喷管内越易发生凝结,在实际生产中可以通过调节入口压力来促进天然气的凝结,提高Laval喷管的液化效率。

     

  • 图  Laval喷管三维结构

    Figure  1.  Structure of Laval nozzle

    图  Laval喷管沿程压力分布数据对比

    Figure  2.  Comparison of pressure distribution data in Laval nozzle

    图  Laval喷管内气体压力分布

    Figure  3.  Gas pressure distribution in Laval nozzle

    图  Laval喷管内气体温度分布

    Figure  4.  Gas temperature distribution in Laval nozzle

    图  Laval喷管内成核率分布

    Figure  5.  Nucleation rate distribution in Laval nozzle

    图  Laval喷管内液滴半径分布

    Figure  6.  Droplet radius distribution in Laval nozzle

    图  Laval喷管内液滴生长率分布

    Figure  7.  Droplet growth rate distribution in Laval nozzle

    图  Laval喷管内液相质量分数分布

    Figure  8.  Liquid mass fraction distribution in Laval nozzle

    表  1  Laval喷管各部分参数

    Table  1.   Parameters of Laval nozzle

    L0/mm r1/mm L1/mm rcr/mm L2/mm r2/mm
    50.00 20.00 56.01 2.50 71.28 6.15
    下载: 导出CSV
  • [1] SHI G H, JING Y Y, WANG S L, et al.Development status of liquefied natural gas industry in China[J].Energy Policy, 2010, 38(11):7457-7465. doi: 10.1016/j.enpol.2010.08.032
    [2] LIN W, ZHANG N, GU A.LNG (liquefied natural gas):a necessary part in China's future energy infrastructure[J].Energy, 2010, 35(11):4383-4391. doi: 10.1016/j.energy.2009.04.036
    [3] 杨文, 曹学文, 孙丽, 等.天然气液化技术研究现状及进展[J].天然气化工(C1化学与化工), 2015, 40(3):88-93. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqhg201503021

    YANG W, CAO X W, SUN L, et al.Natural gas liquefaction technology research status and progress[J].Natural Gas Chemical Industry, 2015, 40(3):88-93. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqhg201503021
    [4] YANG Y, WALTHER J H, YAN Y, et al.CFD modelling of condensation process of water vapor in supersonic flows[J].Applied Thermal Engineering, 2017, 115:1357-1362. doi: 10.1016/j.applthermaleng.2017.01.047
    [5] SUN W J, CAO X, YANG W, et al.Numerical simulation of CO2 condensation process from CH4-CO2 binary gas mixture in supersonic nozzles[J].Separation and Purification Technology, 2017, 118(29):458-470.
    [6] WEN C, CAO X, YANG Y, et al.Numerical simulation of natural gas flows in diffusers for supersonic separators[J].Energy, 2012, 37(1):195-200. https://www.sciencedirect.com/science/article/pii/S036054421100778X
    [7] 杨文, 曹学文.Laval喷管设计及在天然气液化中的应用研究[J].西安石油大学学报(自然科学版), 2015, 30(2):75-79. http://www.cnki.com.cn/Article/CJFDTotal-XASY201502014.htm

    YANG W, CAO X W.Design of Laval nozzle and its application in liquefaction of natural gas[J].Journal of Xi'an Shiyou University (Natural Science Edition), 2015, 30(2):75-79. http://www.cnki.com.cn/Article/CJFDTotal-XASY201502014.htm
    [8] CAO X, YANG W.Numerical simulation of binary-gas condensation characteristics in supersonic nozzles[J].Journal of Natural Gas Science and Engineering, 2015, 25(4):197-206. https://www.sciencedirect.com/science/article/pii/S1875510015001912
    [9] BIAN J, JIANG W M, TENG L, et al.Structure improvements and numerical simulation of supersonic separators[J].Chemical Engineering & Processing, 2016, 110:214-219. https://www.sciencedirect.com/science/article/pii/S0255270116301738
    [10] LI Z C, SUN H, GUO B L, et al.A design method of supersonic separator used in natural gas liquefaction process[J].Advanced Materials Research, 2013, 609:1309-1313. https://www.scientific.net/AMR.608-609.1309
    [11] 刘杨, 边江, 郭晓明, 等.Laval喷管结构对流动特性和制冷性能的影响[J].低温与超导, 2016, 44(12):67-71, 76. http://mall.cnki.net/magazine/Article/DWYC201612014.htm

    LIU Y, BIAN J, GUO X M, et al.Effect of Laval nozzle structure on the flow characteristic and refrigeration performance[J].Cryogenics & Superconductivity, 2016, 44(12):67-71, 76. http://mall.cnki.net/magazine/Article/DWYC201612014.htm
    [12] 杨文, 曹学文, 徐晓婷, 等.高速膨胀天然气凝结流动特性[J].石油学报(石油加工), 2016, 32(1):73-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb-syjg201601011

    YANG W, CAO X W, XU X T, et al.Flow and condensation characteristics of natural gas with high speed expansion[J].Acta Petrolei Sinica (Petroleum Processing Section), 2016, 32(1):73-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb-syjg201601011
    [13] JASSIM E, ABDI M A, MUZYCHKA Y.Computational fluid dynamics study for flow of natural gas through high-pressure supersonic nozzles (Part 1):real gas effects and shockwave[J].Petroleum Science and Technology, 2008, 26(15):1757-1772. doi: 10.1080/10916460701287847
    [14] JASSIM E, ABDI M A, MUZYCHKA Y.Computational fluid dynamics study for flow of natural gas through high-pressure supersonic nozzles (Part 2):nozzle geometry and vorticity[J].Petroleum Science and Technology, 2008, 26(15):1773-1785. doi: 10.1080/10916460701304410
    [15] 杨文, 侯志强, 陈鹏, 等.双组分气体自发凝结成核模型修正[J].石油学报(石油加工), 2017, 33(2):273-280. http://d.old.wanfangdata.com.cn/Periodical/syxb-syjg201702012

    YANG W, HOU Z Q, CHEN P, et al.Modification of models for binary component vapor spontaneous nucleation[J].Acta Petrolei Sinica (Petroleum Processing Section), 2017, 33(2):273-280. http://d.old.wanfangdata.com.cn/Periodical/syxb-syjg201702012
    [16] JIANG W M, BIAN J, LIU Y, et al.Investigation of flow characteristics and the condensation mechanism of ternary mixture in a supersonic nozzle[J].Journal of Natural Gas Science & Engineering, 2016, 34:1054-1061. https://www.sciencedirect.com/science/article/pii/S1875510016305479
    [17] JIANG W M, LIU Z L, LIU H W, et al.Influences of friction drag on spontaneous condensation in water vapor supersonic flows[J].Science in China Series E:Technological Sciences, 2009, 52(9):2653-2659. doi: 10.1007/s11431-009-0121-5
    [18] SHOOSHTARI S H R, SHAHSAVAND A.Reliable prediction of condensation rates for purification of natural gas via supersonic separators[J].Separation and Purification Technology, 2013, 116(37):458-470. https://www.sciencedirect.com/science/article/pii/S1383586613003663
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  7980
  • HTML全文浏览量:  3294
  • PDF下载量:  504
出版历程
  • 收稿日期:  2017-09-09
  • 修回日期:  2017-10-25

目录

    /

    返回文章
    返回