应变率和孔隙率对规则多孔钛压缩力学性能的影响

王婧 任会兰 申海艇 宁建国

王婧, 任会兰, 申海艇, 宁建国. 应变率和孔隙率对规则多孔钛压缩力学性能的影响[J]. 高压物理学报, 2017, 31(4): 364-372. doi: 10.11858/gywlxb.2017.04.003
引用本文: 王婧, 任会兰, 申海艇, 宁建国. 应变率和孔隙率对规则多孔钛压缩力学性能的影响[J]. 高压物理学报, 2017, 31(4): 364-372. doi: 10.11858/gywlxb.2017.04.003
WANG Jing, REN Hui-Lan, SHEN Hai-Ting, NING Jian-Guo. Effects of Strain Rate and Porosity on the Compressive Behavior of Porous Titanium with Regular Pores[J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 364-372. doi: 10.11858/gywlxb.2017.04.003
Citation: WANG Jing, REN Hui-Lan, SHEN Hai-Ting, NING Jian-Guo. Effects of Strain Rate and Porosity on the Compressive Behavior of Porous Titanium with Regular Pores[J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 364-372. doi: 10.11858/gywlxb.2017.04.003

应变率和孔隙率对规则多孔钛压缩力学性能的影响

doi: 10.11858/gywlxb.2017.04.003
基金项目: 

国家自然科学基金(11572049)

详细信息
    通讯作者:

    任会兰(1973—), 女,博士,教授,主要从事材料动力学行为研究.

Effects of Strain Rate and Porosity on the Compressive Behavior of Porous Titanium with Regular Pores

  • 摘要: 采用普通材料测试机和分离式霍普金森压杆(SHPB)实验装置对孔隙规则排布的多孔钛试样进行准静态及动态单轴压缩实验,研究了应变率和孔隙率对多孔钛材料弹性模量、屈服强度和能量吸收能力的影响。结果表明:在不同应变率下,规则多孔钛应力-应变曲线在特定区域均可近似为双线性模型;孔隙率对弹性模量、屈服强度和能量吸收能力有直接影响,屈服强度和能量吸收能力均与应变率相关,并给出了同时考虑孔隙率和应变率对屈服强度影响的经验公式。

     

  • LI B Y, RONG L J, LI Y Y, et al. Synthesis of porous Ni-Ti shape-memory alloys by self-propagating high-temperature synthesis: reaction mechanism and anisotropy in pore structure [J]. Acta Mater, 2000, 48(15): 3895-3904.
    KURODA D, NIINOMI M, MORINAGA M, et al. Design and mechanical properties of new type titanium alloys for implant materials [J]. Mater Sci Eng A, 1998, 243(1/2): 244-249.
    张俊彦. 多孔材料的力学性能及破坏机理 [D]. 湘潭: 湘潭大学, 2003.
    ZHANG J Y. Mechanical properties and breakage mechanism of cellular materials [D]. Xiangtan: Xiangtan University, 2003.
    李煦阳. 孔隙类工程材料的静动态力学性能研究和在防护工程中的应用 [D]. 合肥: 中国科学技术大学, 2014.
    LI X Y. Research on mechanics behavior and defense engineering application of void containing materials [D]. Hefei: University of Science and Technology of China, 2014.
    汤慧萍, 王建. 多孔钛的研究进展 [J]. 中国材料进展, 2014(9): 576-585.
    TANG H P, WANG J. Progress in research and development of porous titanium materials [J]. Materials China, 2014(9): 576-585.
    IQBAL N, XUE P, LIAO H J, et al. Material characterization of porous bronze at high strain rates [J]. Mater Sci Eng A, 2011, 528(13/14): 4408-4412.
    UPADHYAYA G S. Powder metallurgy technology [M]. Cambridge International Science Publishing, 1997.
    XUE P, IQBAL N, LIAO H J, et al. Experimental study, on strain rate sensitivity of ductile porous irons [J]. Int J Impact Eng, 2012, 48(1): 82-86.
    WANG B, ZHANG J, LU G. Taylor impact test for ductile porous materialsPart 2: experiments [J]. Int J Impact Eng, 2003, 28(5): 499-511.
    WANG B, KLEPACZKO J R, LU G, et al. Viscoplastic behaviour of porous bronzes and irons [J]. J Mater Process Tech, 2001, 113(1/2/3): 574-580.
    LIU X H, HUANG H Y, XIE J X. Effect of strain rate on the compressive deformation behaviors of lotus-type porous copper [J]. Int J Min Met Mater, 2014, 21(7): 687-695.
    HYUN S K, NAKAJIMA H. Fabrication of porous iron by unidirectional solidification in nitrogen atmosphere [J]. Mater Trans, 2002, 43(3): 526-531.
    WANG X H, LI J, RUI H U, et al. Mechanical properties and pore structure deformation behaviour of biomedical porous titanium [J]. T Nonferr Metal Soc, 2015, 25(5): 1543-1550.
    SCHUEREN B V D, KRUTH J P. Powder deposition in selective metal powder sintering [J]. Rapid Prototyping J, 1995, 1(3): 23-31.
    王永刚, 王春雷. 结构特征参数和应变速率对泡沫铝压缩力学性能的影响 [J]. 兵工学报, 2011, 32(1): 106-111.
    WANG Y G, WANG C L. Effect of structure characteristic parameters and strain rate on the compressive mechanic properties of aluminum foams [J]. Acta Armamentarii, 2011, 32(1): 106-111.
    SIMONE A E, GIBSON L J. The effects of cell face curvature and corrugations on the stiffness and strength of metallic foams [J]. Acta Mater, 1998, 46(11): 3929-3935.
    SIMONE A E, GIBSON L J. Effects of solid distribution on the stiffness and strength of metallic foams [J]. Acta Mater, 1998, 46(6): 2139-2150.
    牛文娟. 多孔钛及其合金的制备及性能研究 [D]. 重庆: 重庆大学, 2010.
    NIU W J. Research on preparation and properties of porous titanium and its alloys [D]. Chongqing: Chongqing University, 2010.
    刘培生, 黄林国. 多孔金属材料制备方法 [J]. 功能材料, 2002, 33(1): 5-8.
    LIU P S, HUANG L G. Preparation methods for porous metal materials [J]. Journal of Functional Materials, 2002, 33(1): 5-8.
    卢天健, 何德坪, 陈常青, 等. 超轻多孔金属材料的多功能特性及应用 [J]. 力学进展, 2006, 36(4): 517-535.
    LU T J, HE D P, CHEN C Q, et al. The multi-functionality of ultra-light porous metals and their applications [J]. Advances in Mechanics, 2006, 36(4): 517-335.
    刘培生. 多孔材料孔率的测定方法 [J]. 钛工业进展, 2005, 22(6): 34-37.
    LIU P S. Determining methods for porosity of porous materials [J]. Titanium Industry Progress, 2005, 22(6): 34-37.
    LEE O S, KIM M S. Dynamic material property characterization by using split Hopkinson pressure bar (SHPB) technique [J]. Nucl Eng Des, 2003, 226(2): 119-125.
    常列珍, 张治民. SHPB实验技术及其发展 [J]. 机械管理开发, 2006(5): 29-31.
    CHANG L Z, ZHANG Z M. The experiment technology and development of SHPB [J]. Mechanical Management Development, 2006(5): 29-31.
    NAKAJIMA H. Porous metals with directional pores [M]. Springer Japan, 2013: 151-153.
    TANE M, ICHITSUBO T, HYUN S K, et al. Anisotropic yield behavior of lotus-type porous iron: measurements and micromechanical mean-field analysis [J]. J Mater Res, 2005, 20(1): 135-143.
    TANE M, ICHITSUBO T, HIRAO M, et al. Extended mean-field method for predicting yield behaviors of porous materials [J]. Mech Mater, 2007, 39(1): 53-63.
    ARCHIE G E. The electrical resistivity log as an aid in determining some reservoir characteristics [J]. Trans AIME, 1942, 146(1): 54-62.
  • 加载中
计量
  • 文章访问数:  6495
  • HTML全文浏览量:  511
  • PDF下载量:  310
出版历程
  • 收稿日期:  2017-02-06
  • 修回日期:  2017-03-13
  • 发布日期:  2017-08-25

目录

    /

    返回文章
    返回