毫秒级快速压缩技术在材料科学中的应用

刘秀茹 王君龙 陈丽英 洪时明

刘秀茹, 王君龙, 陈丽英, 洪时明. 毫秒级快速压缩技术在材料科学中的应用[J]. 高压物理学报, 2017, 31(3): 223-230. doi: 10.11858/gywlxb.2017.03.003
引用本文: 刘秀茹, 王君龙, 陈丽英, 洪时明. 毫秒级快速压缩技术在材料科学中的应用[J]. 高压物理学报, 2017, 31(3): 223-230. doi: 10.11858/gywlxb.2017.03.003
LIU Xiu-Ru, WANG Jun-Long, CHEN Li-Ying, HONG Shi-Ming. Applications of Rapid Compression Technique within Milliseconds in Materials Science[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 223-230. doi: 10.11858/gywlxb.2017.03.003
Citation: LIU Xiu-Ru, WANG Jun-Long, CHEN Li-Ying, HONG Shi-Ming. Applications of Rapid Compression Technique within Milliseconds in Materials Science[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 223-230. doi: 10.11858/gywlxb.2017.03.003

毫秒级快速压缩技术在材料科学中的应用

doi: 10.11858/gywlxb.2017.03.003
基金项目: 

国家自然科学基金 11004163

国家自然科学基金 10774123

中央高校基础科研业务费 2682014ZT31

详细信息
    作者简介:

    刘秀茹(1981-), 女, 博士, 副教授, 主要从事高压下亚稳材料的制备与物性研究.E-mail:xrliu@swjtu.edu.cn

  • 中图分类号: O521.3;O521.9;O756

Applications of Rapid Compression Technique within Milliseconds in Materials Science

  • 摘要: 毫秒级快速压缩对材料结构和性质的影响研究仍处于起步阶段,提高快速压缩实验技术水平、持续深入地开展快速压缩下材料的高压物性和新材料制备研究具有重要的科学意义。介绍了4种毫秒级快速压缩实验技术,简述了快速压缩技术在材料科学中的应用,包括制备非晶材料、测量Grüneisen参数和W-J参数、研究相变动力学。

     

  • 图  制取非晶材料的几种基本途径示意图[16]

    Figure  1.  Schematic illustration of several preparation methods of amorphous materials[16]

    图  熔体快速压致凝固法制备的非晶硫[22-22, 25]((a)大块非晶硫照片; (b)室温下每隔10 min拍摄的非晶硫WAXS谱; (c)非晶硫的DSC曲线及放热熔化前、后(即369和413 K)的样品照片; (d) λ转变前、后的液态硫经快速压致凝固后制得的两种非晶硫)

    Figure  2.  Bulk amorphous sulfur prepared by rapid compression[22-22, 25]((a) Picture of bulk amorphous sulfur; (b) WAXS patterns of amorphous sulfur taken at room temperature with time interval 10 min; (c) DSC profile of amorphous sulfur, which shows an abnormal exothermic melting phenomenon; (The photos of sample at 369 and 413 K are inserted.) (d) Preparation of two kinds of amorphous sulfur from liquid sulfur before and after λ transition.)

    图  急冷法(a)和快速压致凝固法(b)制备的块体PEEK的剖面XRD谱[27]

    (前者只有表层是完全的非晶相, 后者则从表面到中心均为完全的非晶相)

    Figure  3.  XRD patterns of PEEK samples prepared by (a) rapid cooling and (b) rapid compression taken along the longitudinal section[27].It indicates that only the surface of the former sample is fully amorphous in structure and its inner part exhibits amorphous and crystal structures, while the latter sample is fully amorphous in structure from the surface to the center.

    图  Cu的Grüneisen参数随压力的变化[32]

    Figure  4.  Grüneisen parameter of Cu vs.pressure[32]

    图  Pb的W-J参数[37]

    Figure  5.  W-J parameter of Pb vs.pressure[37]

  • [1] BOEHLER R, GETTING I C, KENNEDY G C.Grüneisen parameter of NaCl at high compressions[J].J Phys Chem Solids, 1977, 38(3):233-236. doi: 10.1016-0022-3697(77)90095-6/
    [2] BOEHLER R.Adiabats (∂T/∂P)s and Grüneisen parameter of NaCl up to 50 kilobars and 800 ℃[J].J Geophys Res, 1981, 86:7159-7162. doi: 10.1029/JB086iB08p07159
    [3] BOEHLER R, ROSS M.Grüneisen parameter of cesium and rubidium at high pressure and the nature of the isostructural electronic transition[J].Phys Rev B, 1984, 29(6):3673-3676. doi: 10.1103/PhysRevB.29.3673
    [4] MENCKE A, CHENG A, CAFFREY M.A simple apparatus for time-resolved X-ray diffraction biostructure studies using static and oscillating pressures and pressure jumps[J].Rev Sci Instrum, 1993, 64(2):383-389. doi: 10.1063/1.1144261
    [5] WOENCKHAUS J, KOHLING R, WINTER R, et al.High pressure-jump apparatus for kinetic studies of protein folding reactions using the small-angle synchrotron X-ray scattering technique[J].Rev Sci Instrum, 2000, 71(10):3895-3899. doi: 10.1063/1.1290508
    [6] DI LEONARDO R, SCOPIGNO T, RUOCCO G, et al.Spectroscopic cell for fast pressure jumps across the glass transition line[J].Rev Sci Instrum, 2004, 75(8):2631-2637. doi: 10.1063/1.1763253
    [7] SCHIEWEK M, KRUMOVA M, HEMPEL G, et al.Pressure jump relaxation setup with IR detection and millisecond time resolution[J].Rev Sci Instrum, 2007, 78:045101. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ02382076/
    [8] EUERT U, KRUMOVA M, HEMPEL G, et al.NMR probe for pressure-jump experiments up to 250 bars and 3 ms jump time[J].Rev Sci Instrum, 2010, 81(10):105102. doi: 10.1063/1.3481164
    [9] BROOKS N J, GAUTHE B L, TERRILL N J, et al.Automated high pressure cell for pressure jump X-ray diffraction[J].Rev Sci Instrum, 2010, 81(6):064103. doi: 10.1063/1.3449332
    [10] HONG S M, CHEN L Y, LIU X R, et al.High pressure jump apparatus for measuring Grüneisen parameter of NaCl and studying metastable amorphous phase of poly (ethylene terephthalate)[J].Rev Sci Instrums, 2005, 76(5):053905. doi: 10.1063/1.1899443
    [11] EVANS W J, YOO C S, LEE G W, et al.Dynamic diamond anvil cell (dDAC):a novel device for studying the dynamic-pressure properties of materials[J].Rev Sci Instrum, 2007, 78(7):073904. doi: 10.1063/1.2751409
    [12] 汪卫华.非晶态物质的本质与特性[J].物理学进展, 2013, 33(5):177-351. http://d.old.wanfangdata.com.cn/Periodical/zgkjzh201619183

    WANG W H.The nature and properties of amorphous matter[J].Progress in Physics, 2013, 33(5):177-351. http://d.old.wanfangdata.com.cn/Periodical/zgkjzh201619183
    [13] MISHIMA O, CALVERT L D, WHALLEY E.'Melting ice' Ⅰ at 77 K and 10 kbar:a new method of making amorphous solids[J].Nature, 1984, 310(5976):393-395. doi: 10.1038/310393a0
    [14] 王文魁.亚稳相的高压暴露[J].高压物理学报, 1989, 3(4):257-268. http://www.gywlxb.cn/CN/abstract/abstract1250.shtml

    WANG W K.Exposure of metastable phases by high pressure[J].Chinese Journal of High Pressure Physics, 1989, 3(4):257-268. http://www.gywlxb.cn/CN/abstract/abstract1250.shtml
    [15] YANG C, LIU R P, ZHAN Z J, et al.Formation of ZrTiCuNiBe bulk metallic glass by shock-wave quenching[J].Appl Phys Lett, 2005, 87(5):051904. doi: 10.1063/1.2005367
    [16] 刘秀茹, 王明友, 张豆豆, 等.快速压致凝固法制备块体亚稳材料的研究进展[J].高压物理学报, 2014, 28(4):385-393. http://www.gywlxb.cn/CN/abstract/abstract1719.shtml

    LIU X R, WANG M Y, ZHANG D D, et al.Progress in preparation of bulk metastable materials by rapid compression induced solidification[J].Chinese Journal of High Pressure Physics, 2014, 28(4):385-393. http://www.gywlxb.cn/CN/abstract/abstract1719.shtml
    [17] JIA R, SHAO C G, SU L, et al.Rapid compression induced solidification of bulk amorphous sulfur[J].J Phys D, 2007, 40(12):3763-3766. doi: 10.1088/0022-3727/40/12/030
    [18] ANDRIKOPOULOS K S, KALAMPOUNIAS A G, FALAGARA O, et al.The glassy and supercooled state of elemental sulfur:vibrational modes, structure metastability, and polymer content[J].J Chem Phys, 2013, 139(12):124501. doi: 10.1063/1.4821592
    [19] SANLOUP C, GREGORYANZ E, DEGTYAREVA O, et al.Structural transition in compressed amorphoussulfur[J].Phys Rev Lett, 2008, 100(7):075701. doi: 10.1103/PhysRevLett.100.075701
    [20] SHAO C, AN H, WANG X, et al.Deformation-induced linear chain-ring transition and crystallization of living polymer sulfur[J].Macromolecules, 2007, 40(26):9475-9481. doi: 10.1021/ma071803a
    [21] YU P, WANG W H, WANG R J, et al.Understanding exceptional thermodynamic and kinetic stability of amorphous sulfur obtained by rapid compression[J].Appl Phys Lett, 2009, 94(1):011910. doi: 10.1063/1.3064125
    [22] ZHANG D D, LIU X R, HONG S M, et al.Exothermic supercooled liquid-liquid transition in amorphous sulfur[J].Chin Phys Lett, 2014, 31(6):066401. doi: 10.1088/0256-307X/31/6/066401
    [23] 刘秀茹, 张豆豆, 洪时明, 等.非晶硫熔化过程中的链环转变[J].科学通报, 2014, 59(35):3450-3452. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201435003.htm

    LIU X R, ZHANG D D, HONG S M, et al.Chain-ring transition during exothermic "melting" in amorphous sulfur[J].Chinese Science Bulletin, 2014, 59(35):3450-3452. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201435003.htm
    [24] ZHANG D D, LIU X R, HONG S M, et al.Pressure and time dependences of the supercooled liquid-to-liquid transition in sulfur[J].Chin Phys Lett, 2016, 33(2):026301. doi: 10.1088/0256-307X/33/2/026301
    [25] TANG F, ZHANG L J, LIU F L, et al.Pressure-induced solidifications of liquid sulfur below and above transition[J].Chin Phys B, 2016, 25(4):046102. doi: 10.1088/1674-1056/25/4/046102
    [26] SIMONIN L, LIAO H.Characterization of flame-sprayed PEEK coatings by FTIR-ATR, DSC and acoustic microscopy[J].Macromol Mater Eng, 2000, 283(1):153-162. doi: 10.1002/(ISSN)1439-2054
    [27] YUAN C S, HONG S M, LI X X, et al.Rapid compression preparation and characterization of oversized bulk amorphous polyether-ether-ketone[J].J Phys D, 2011, 44(16):165405. doi: 10.1088/0022-3727/44/16/165405
    [28] 洪时明.高压相变与时间的关系[J].高压物理学报, 2013, 27(2):162-167. http://www.gywlxb.cn/CN/abstract/abstract1550.shtml

    HONG S M.Time dependence of high pressure induced phase transitions[J].Chinese Journal of High Pressure Physics, 2013, 27(2):162-167. http://www.gywlxb.cn/CN/abstract/abstract1550.shtml
    [29] WANG M Y, LIU X R, ZHANG C R, et al.Compression-rate dependence of solidified structure from melt in isotactic polypropylene[J].J Phys D, 2013, 46(14):145307. doi: 10.1088/0022-3727/46/14/145307
    [30] SHENG H W, LIU H Z, CHENG Y Q, et al.Polyamorphism in a metallic glass[J].Nat Mater, 2007, 6(3):192-197. doi: 10.1038/nmat1839
    [31] LIU X R, HONG S M.Evidence for a pressure-induced phase transition of amorphous to amorphous in two lanthanide- based bulk metallic glasses[J].Appl Phys Lett, 2007, 90(25):251903. doi: 10.1063/1.2749722
    [32] HUANG D H, LIU X R, SU L, et al.Measuring Grüneisen parameter of iron and copper by an improved high pressure-jump method[J].J Phys D, 2007, 40(17):5327-5330. doi: 10.1088/0022-3727/40/17/047
    [33] 陈丽英.快速大幅度增压法测量NaCl的Grüneisen参数[D].成都: 西南交通大学, 2005. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y751992

    CHEN L Y.Measuring Grüneisen parameter of NaCl by double quick and larger range compression[D].Chengdu: Southwest Jiaotong University, 2005. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y751992
    [34] 陈丽英, 刘秀茹, 黎明发, 等.一种直接测量W-J参数的实验方法[J].物理学报, 2013, 62(7):079102. http://d.old.wanfangdata.com.cn/Periodical/wlxb201307078

    CHEN L Y, LIU X R, LI M F, et al.An experimental method to measure W-J parameters[J].Acta Physica Sinica, 2013, 62(7):079102. http://d.old.wanfangdata.com.cn/Periodical/wlxb201307078
    [35] CHEN L Y, LIU X R, HUANG H J, et al.Measuring the isentropic compression curves and W-J parameters of tantalum and molybdenum via a pressure-jump method[J].Mater Res Express, 2014, 1(2):025707. doi: 10.1088/2053-1591/1/2/025707
    [36] CHEN L Y, LIU X R, HE Z, et al.Measuring the W-J parameter of graphite via a pressure-jump method[J].Adv Mater Res, 2014, 926:154-157. http://www.scientific.net/AMR.926-930.154
    [37] 陈丽英.快速增压法测量物质的等熵压缩曲线及W-J参数[D].成都: 西南交通大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10613-1015348779.htm

    CHEN L Y.Measurement of the isentropic compression curve and W-J parameter via a pressure-jump method[D].Chengdu: Southwest Jiaotong University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10613-1015348779.htm
  • 加载中
图(5)
计量
  • 文章访问数:  5923
  • HTML全文浏览量:  2600
  • PDF下载量:  76
出版历程
  • 收稿日期:  2016-12-07
  • 修回日期:  2017-02-09

目录

    /

    返回文章
    返回