局部改性弹体低速贯穿金属靶板的破坏形式研究

沈正祥 李亚哲 张宏亮 杨辉 王芳 周克 刘峰涛

沈正祥, 李亚哲, 张宏亮, 杨辉, 王芳, 周克, 刘峰涛. 局部改性弹体低速贯穿金属靶板的破坏形式研究[J]. 高压物理学报, 2017, 31(2): 202-208. doi: 10.11858/gywlxb.2017.02.014
引用本文: 沈正祥, 李亚哲, 张宏亮, 杨辉, 王芳, 周克, 刘峰涛. 局部改性弹体低速贯穿金属靶板的破坏形式研究[J]. 高压物理学报, 2017, 31(2): 202-208. doi: 10.11858/gywlxb.2017.02.014
SHEN Zheng-Xiang, LI Ya-Zhe, ZHANG Hong-Liang, YANG Hui, WANG Fang, ZHOU Ke, LIU Feng-Tao. Experimental Studies on Failure Mode of Low Speed Projectilesby Local Modification on Steel Plates[J]. Chinese Journal of High Pressure Physics, 2017, 31(2): 202-208. doi: 10.11858/gywlxb.2017.02.014
Citation: SHEN Zheng-Xiang, LI Ya-Zhe, ZHANG Hong-Liang, YANG Hui, WANG Fang, ZHOU Ke, LIU Feng-Tao. Experimental Studies on Failure Mode of Low Speed Projectilesby Local Modification on Steel Plates[J]. Chinese Journal of High Pressure Physics, 2017, 31(2): 202-208. doi: 10.11858/gywlxb.2017.02.014

局部改性弹体低速贯穿金属靶板的破坏形式研究

doi: 10.11858/gywlxb.2017.02.014
基金项目: 

冲击环境材料技术重点实验室基金 C32146

宁波市自然科学基金 2015A610069

详细信息
    作者简介:

    沈正祥(1984—), 男, 博士, 主要从事材料爆炸与冲击动力学研究. E-mail: shenzx84@163.com

  • 中图分类号: O385; TJ413.1

Experimental Studies on Failure Mode of Low Speed Projectilesby Local Modification on Steel Plates

  • 摘要: 为研究局部改性弹体结构的破坏和质量损失规律,设计了不同改性特征的侵彻弹体,在380~500 m/s速度范围内进行了侵彻装甲靶板的实验研究,并对弹体的破坏形式、质量损失等问题进行了探讨。结果表明:随着初始速度的增加,实验弹体的弹长侵蚀率及相对质量损失率相应增加,而弹径磨损率变化较小;穿靶后实验弹体以头部剪切断裂为主要破坏形式,但主体部分仍然保持稳定。改性工艺①和工艺⑤既与弹体强度有较好的匹配性,又可保持良好的破碎性能。

     

  • 图  实验弹体实物

    Figure  1.  Structural schematic of cylindrical projectiles

    图  弹体表面的改性区与基体组织

    Figure  2.  Structure of hardened layers and bulk materials

    图  实验系统示意图

    Figure  3.  Schematic of experiment system

    图  穿靶后弹体头部的失效破坏情况

    Figure  4.  Failure of projectiles after impacting experiments

    图  两种弹体头部的断面形貌

    Figure  5.  Fracture surface of the head of 2 projectiles

    图  穿靶后结构完整的弹体

    Figure  6.  Projectiles of structural integrity after impacting experiments

    图  不同条件下弹长侵蚀率变化

    Figure  7.  Corrosion rate of projectile length vs. impact velocity

    图  不同条件下弹径磨损率变化

    Figure  8.  Corrosion rate of projectile diameter vs. impact velocity

    图  不同条件下弹体的质量损失率

    Figure  9.  Mass loss of projectile vs. impact velocity

    图  10  弹体结构示意图

    Figure  10.  Schematic of projectile

    图  11  穿靶后10#、6#和1#弹体破片的数量分布

    Figure  11.  Cumulative number distributions of 10#, 6# and 1# projectiles

    表  1  局部改性工艺

    Table  1.   Processes of local modification

    Technical parameter Voltage/(kV) Focus current/(mA) Scan speed/(mm/s) Projectile No.
    60 520 90 8#, 10#
    60 515 70 2#, 3#
    50 405 75 4#, 5#
    60 400 70 9#
    50 410 90 6#, 7#
    None 1#
    下载: 导出CSV

    表  2  弹体侵彻装甲靶板实验结果

    Table  2.   Experimental results of penetration into RHA target

    Projectile No. Target thickness/(mm) Mass of projectile/(g) Technical parameter Impact velocity/(m/s) Results
    1# 4 107.0 None 494 Perforation with projectile nose destroyed
    2# 4 107.2 407 Perforation with projectile nose destroyed
    3# 4 105.5 417 Perforation with projectile nose destroyed
    4# 4 106.6 427 Perforation with projectile nose destroyed
    5# 4 106.1 441 Perforation with projectile nose destroyed
    6# 4 105.6 441 Perforation with projectile integrity
    7# 4 105.8 440 Perforation with projectile integrity
    8# 4 107.1 443 Perforation with projectile integrity
    9# 4 107.5 484 Perforation with projectile nose destroyed
    10# 4 105.1 443 Perforation with projectile integrity
    下载: 导出CSV

    表  3  穿靶后弹体的质量损失

    Table  3.   Variation of the projectiles mass after impacting

    Projectile No. m0/(g) mf/(g) $ \frac{{\Delta m}}{{{m_0}}}/\left( \% \right) $
    1# 107.0 100.3 6.20
    2# 107.2 104.9 2.10
    3# 105.5 104.3 1.10
    4# 106.6 106.5 0.09
    5# 106.1 103.7 2.26
    6# 105.6 105.5 0.09
    7# 105.8 105.4 3.70
    8# 107.1 107.0 0.09
    9# 107.5 103.6 3.62
    10# 105.1 105.0 0.09
    下载: 导出CSV
  • [1] 徐文铮, 王晶禹, 陆震, 等.弹性弹体侵彻混凝土靶板的过载特性研究[J].振动与冲击, 2010, 29(5):91-95. doi: 10.3969/j.issn.1000-3835.2010.05.020

    XU W Z, WANG J Y, LU Z, et al.Drag acceleration characteristic of penetration of elastic projectiles into a concrete target[J].Journal of Vibration and Shock, 2010, 29(5):91-95. doi: 10.3969/j.issn.1000-3835.2010.05.020
    [2] WOODWARD R L.Penetration of semi-infinite metal targets by deforming projectiles[J].Int J Mech Sci, 1982, 24(2):73-87. doi: 10.1016/0020-7403(82)90039-X
    [3] MEYERS M A.Effects of metallurgical parameters on shear band formation in low-carbon steels[J].Metall Trans A, 1990, 21:3153-3164. doi: 10.1007/BF02647311
    [4] FORRESTAL M J, PIEKUTOWSKI A J.Penetration experiments with 6061-T6511 aluminum targets and spherical nose steel projectiles at striking velocities between 0.5 and 3.0 km/s[J].Int J Impact Eng, 2000, 24(1):57-67. doi: 10.1016/S0734-743X(99)00033-0
    [5] MISHRA B, RAMAKRISHNA B, JENA P K, et al.Experimental studies on the effect of size and shape of holes on damage and microstructure of high hardness armour steel plates under ballistic impact[J].Mater Des, 2013, 43:17-24. doi: 10.1016/j.matdes.2012.06.037
    [6] 皮爱国, 黄风雷.大长细比结构弹体侵彻2024-O铝靶的弹塑性动力响应[J].爆炸与冲击, 2008, 28(3):252-260. doi: 10.3321/j.issn:1001-1455.2008.03.010

    PI A G, HUANG F L.Elastic-plastic dynamic response of slender projectiles penetrating into 2024-O aluminum targets[J].Explosion and Shock Waves, 2008, 28(3):252-260. doi: 10.3321/j.issn:1001-1455.2008.03.010
    [7] 王可慧, 耿宝刚, 初哲, 等.弹体高速侵彻钢筋混凝土靶的结构变形及质量损失的实验研究[J].高压物理学报, 2014, 28(1):61-68. http://www.gywlxb.cn/CN/abstract/abstract1671.shtml

    WANG K H, GENG B G, CHU Z, et al.Experimental studies on structural response and mass loss of high velocity projectiles penetrating into reinforced concrete targets[J].Chinese Journal of High Pressure Physics, 2014, 28(1):61-68. http://www.gywlxb.cn/CN/abstract/abstract1671.shtml
    [8] 陈小伟, 张方举, 梁斌, 等.A3钢钝头弹撞击45钢板破坏模式的试验研究[J].爆炸与冲击, 2006, 26(3):199-207. doi: 10.3321/j.issn:1001-1455.2006.03.002

    CHEN X W, ZHANG F J, LIANG B, et al.Three modes of penetration mechanics of A3 steel cylindrical projectiles impact onto 45 steel plates[J].Explosion and Shock Waves, 2006, 26(3):199-207. doi: 10.3321/j.issn:1001-1455.2006.03.002
    [9] 王富耻, 王琳, 李树奎, 等.空心侵彻弹侵彻金属靶板的细观损伤行为研究[J].兵工学报, 2004, 25(3):359-362. doi: 10.3321/j.issn:1000-1093.2004.03.025

    WANG F C, WANG L, LI S K, et al.Micro-damage study of hollow steel projectiles impacting steel plates[J].Acta Armamentarii, 2004, 25(3):359-362. doi: 10.3321/j.issn:1000-1093.2004.03.025
    [10] 刘峰涛, 袁书强, 陈炯, 等.高能束控制破碎弹体威力对比研究[J].兵器材料科学与工程, 2008, 31(1):67-70. doi: 10.3969/j.issn.1004-244X.2008.01.018

    LIU F T, YUAN S Q, CHEN J, et al.Comparative study on the shell power after high-energy-beam controlled fragmentation[J].Ordnance Material Science and Engineering, 2008, 31(1):67-70. doi: 10.3969/j.issn.1004-244X.2008.01.018
    [11] 陈炯, 袁书强, 周春华, 等.高能束控制破碎钨合金壳体破碎效果研究[J].兵器材料科学与工程, 2010, 33(6):62-64. doi: 10.3969/j.issn.1004-244X.2010.06.019

    CHEN J, YUAN S Q, ZHOU C H, et al.Fragmentation effect of tungsten alloy shells controlled by high-erengy-beam[J].Ordnance Material Science and Engineering, 2010, 33(6):62-64. doi: 10.3969/j.issn.1004-244X.2010.06.019
    [12] SILLING S A, FORRESTAL M J.Mass loss from abrasion on ogive-nose steel projectiles that penetrate concrete tergets[J].Int J Impact Eng, 2007, 34:1814-1820. doi: 10.1016/j.ijimpeng.2006.10.008
    [13] 武海军, 黄风雷, 王一楠, 等.高速侵彻混凝土弹体头部侵蚀终点效应实验研究[J].兵工学报, 2012, 33(1):48-55. http://d.old.wanfangdata.com.cn/Periodical/bgxb201201009

    WU H J, HUANG F L, WANG Y N, et al.Experimental investigation on projectile nose eroding effect of high-velocity penetration into concrete[J].Acta Armamentarii, 2012, 33(1):48-55. http://d.old.wanfangdata.com.cn/Periodical/bgxb201201009
    [14] ZHONG W Z, SONG S C, CHEN G, et al.Stress field of orthotropic cylinder subjected to axial compression[J].Applied Mathematics and Mechanics, 2010, 31(3):305-316. doi: 10.1007/s10483-010-0304-z
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  6869
  • HTML全文浏览量:  2500
  • PDF下载量:  81
出版历程
  • 收稿日期:  2016-07-08
  • 修回日期:  2016-09-07

目录

    /

    返回文章
    返回