小型超高压装置的设计原理及研究进展

韩奇钢 班庆初

韩奇钢, 班庆初. 小型超高压装置的设计原理及研究进展[J]. 高压物理学报, 2015, 29(5): 337-346. doi: 10.11858/gywlxb.2015.05.003
引用本文: 韩奇钢, 班庆初. 小型超高压装置的设计原理及研究进展[J]. 高压物理学报, 2015, 29(5): 337-346. doi: 10.11858/gywlxb.2015.05.003
HAN Qi-Gang, BAN Qing-Chu. Design Theory, Research and Development of Miniature Ultra-High Pressure Devices[J]. Chinese Journal of High Pressure Physics, 2015, 29(5): 337-346. doi: 10.11858/gywlxb.2015.05.003
Citation: HAN Qi-Gang, BAN Qing-Chu. Design Theory, Research and Development of Miniature Ultra-High Pressure Devices[J]. Chinese Journal of High Pressure Physics, 2015, 29(5): 337-346. doi: 10.11858/gywlxb.2015.05.003

小型超高压装置的设计原理及研究进展

doi: 10.11858/gywlxb.2015.05.003
基金项目: 国家自然科学基金(11204102,51475207);高等学校博士学科点新教师基金(20120061120041);吉林大学超硬材料国家重点实验室开放课题资助项目(201410)
详细信息
    作者简介:

    韩奇钢(1983—), 男,博士,副教授,主要从事高压科学与技术研究.E-mail:hanqg@jlu.edu.cn

  • 中图分类号: O521.3

Design Theory, Research and Development of Miniature Ultra-High Pressure Devices

  • 摘要: 高压研究对于寻找高压新相、制备新材料、探索地球深部奥秘具有重要的意义,但高压研究的发展却受到高压技术水平的制约。针对小型超高压装置,简要回顾了普遍使用的金刚石对顶砧(Diamond Anvil Cell, DAC)、Paris-Edinburgh Press(P-E型压力装置)的发展历史,论述了DAC、P-E型压力装置、Palm Cubic-Anvil Cell(P-CAC)、Miniature Cubic-Anvil Cell(M-CAC)等小型超高压装置的设计原理与研究进展,总结了小型高压装置存在的问题,并对其发展趋势进行了展望。

     

  • 图  Mao-Bell式金刚石装置结构示意图[34]

    Figure  1.  Sketch of the Mao-Bell type DAC[34]

    图  P-E压力机结构简图[26]

    Figure  2.  Sketch of the P-E press cell[26]

    图  VX型P-E压力装置结构示意图[30]

    Figure  3.  Diagram of the VX type P-E press[30]

    (a) Front view (b) Cross-section view

    图  RV4型P-E压力装置[32]

    Figure  4.  RV4 type P-E press device[32]

    (a) Physical plot (b) Cross-section view

    图  C-DAC装置[65]

    Figure  5.  C-DAC device[65]

    (a) Structure plot (b) Physical plot

    图  P-CAC装置[66]

    Figure  6.  P-CAC device[66]

    (a) Sectional view (b) Diagram of the cell assembly (c) Diagram of the neutron path

    图  C-CAC设备图[70]

    Figure  7.  Sketch of the C-CAC[70]

    (a) C-CAC assembly (b) Cell of the C-CAC

  • [1] Liu J, Lin J F, Prakapenka V B. High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier[J]. Sci Rep, 2015, 5: 7640. doi: 10.1038/srep07640
    [2] Anzellini S, Dewaele A, Mezouar M, et al. Melting of iron at Earth's inner core boundary based on fast X-ray diffraction[J]. Science, 2013, 340(6131): 464-466. doi: 10.1126/science.1233514
    [3] Lin J F, Wu J, Zhu J, et al. Abnormal elastic and vibrational behaviors of magnetite at high pressures[J]. Sci Rep, 2014, 4: 6282. http://www.nature.com/articles/srep06282
    [4] Takahashi H, Soeda H, Nukii M, et al. Superconductivity at 52 K in hydrogen-substituted LaFeAsO1-xHx under high pressure[J]. Sci Rep, 2015, 5: 7829. doi: 10.1038/srep07829
    [5] Yang W, Huang X, Harder R, et al. Coherent diffraction imaging of nanoscale strain evolution in a single crystal under high pressure[J]. Nature Commun, 2013, 4: 1680. doi: 10.1038/ncomms2661
    [6] Zhou W, Chen X J, Zhang J B, et al. Vibrational, electronic and structural properties of wurtzite GaAs nanowires under hydrostatic pressure[J]. Sci Rep, 2014, 4: 6472. http://europepmc.org/abstract/MED/25253566
    [7] Pan D, Wan Q, Galli G. The refractive index and electronic gap of water and ice increase with increasing pressure[J]. Nature Commun, 2014, 5: 3919. doi: 10.1038/ncomms4919
    [8] Xie H, Yin F, Yu T, et al. Mechanism for direct graphite-to-diamond phase transition[J]. Sci Rep, 2014, 4: 5930. http://www.nature.com/articles/srep05930
    [9] Kong P P, Sun F, Xing L Y, et al. Superconductivity in strong spin orbital coupling compound Sb2Se3[J]. Sci Rep, 2014, 4: 6679. doi: 10.1038/srep06679
    [10] Smedskjaer M M, Youngman R E, Striepe S, et al. Irreversibility of pressure induced boron speciation change in glass[J]. Sci Rep, 2014, 4: 3770. http://pubmedcentralcanada.ca/pmcc/articles/PMC3895877/
    [11] Hall H T. Some High-pressure, high-temperature apparatus design considerations: Equipment for use at 100 000 atmospheres and 3 000 ℃[J]. Rev Sci Instrum, 1958, 29(4): 267-275. doi: 10.1063/1.1716172
    [12] 王海阔, 贺端威.一种新型大腔体高压装置: 中国, 201110091480.3[P]. 2011-09-21.

    Wang H K, He D W. A new type of large cavity high pressure device: China, 201110091480.3[P]. 2011-09-21. (in Chinese)
    [13] Abbaschian R, Zhu H, Clarke C. High pressure-high temperature growth of diamond crystals using split sphere apparatus[J]. Diamond Relat Mater, 2005, 14(11): 1916-1919. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d3edf1a83d855a6d399be0e99dd6e302
    [14] 于歌, 韩奇钢, 李明哲, 等.新型圆角式高压碳化钨硬质合金顶锤的有限元分析[J].物理学报, 2012, 61(4): 040702. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201204011

    Yu G, Han Q G, Li M Z, et al. Finite element analysis of the high-pressure tungsten carbide radius-anvil[J]. Acta Phys Sin, 2012, 61(4): 040702. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201204011
    [15] Kunimoto T, Irifune T. Pressure generation to 125 GPa using a 6-8-2 type multianvil apparatus with nano-polycrystalline diamond anvils[J]. J Phys: Conf Ser, 2010, 215(1): 012190. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000001850854
    [16] Xu J A, Mao H K, Bell P M. High-pressure ruby and diamond fluorescence: Observations at 0.21 to 0.55 terapascal[J]. Science, 1986, 232(4756): 1404-1406. doi: 10.1126/science.232.4756.1404
    [17] Bassett W A. Diamond anvil cell, 50th birthday[J]. High Press Res, 2009, 29(2): 163-186. doi: 10.1080/08957950802597239
    [18] Forman R A, Piermarini G J, Barnett J D, et al. Pressure measurement made by the utilization of ruby sharp-line luminescence[J]. Science, 1972, 176(4032): 284-285. doi: 10.1126/science.176.4032.284
    [19] Piermarini G J, Block S, Barnett J D. Hydrostatic limits in liquids and solids to 100 kbar[J]. J Appl Phys, 1973, 44(12): 5377-5382. doi: 10.1063/1.1662159
    [20] Zou G T, Ma Y Z, Mao H K, et al. A diamond gasket for the laser-heated diamond anvil cell[J]. Rev Sci Instrum, 2001, 72(2): 1298-1301. doi: 10.1063/1.1343864
    [21] Salamat A, Fischer R A, Briggs R, et al. In situ synchrotron X-ray diffraction in the laser-heated diamond anvil cell: Melting phenomena and synthesis of new materials[J]. Coord Chem Rev, 2014, 277: 15-30. http://www.sciencedirect.com/science/article/pii/S0010854514000368
    [22] Jayaraman A. Ultrahigh pressures[J]. Rev Sci Instrum, 1986, 57(6): 1013-1031. doi: 10.1063/1.1138654
    [23] Besson J M, Nelmes R J, Hamel G, et al. Neutron powder diffraction above 10 GPa[J]. Phys B: Conden Matt, 1992, 180: 907-910. http://www.sciencedirect.com/science/article/pii/092145269290505M
    [24] Klotz S, Besson J M, Hamel G, et al. Crystal structure studies to 10 GPa with the Paris-Edinburgh cell: High pressure aspects[J]. AIP Conf Proc, 1994, 309(1): 1577-1580. doi: 10.1063/1.46385
    [25] Besson J M, Nelmes R J. New developments in neutron-scattering methods under high pressure with the Paris-Edinburgh cells[J]. Phys B: Cond Matt, 1995, 213: 31-36. http://www.sciencedirect.com/science/article/pii/092145269500055E
    [26] Besson J M, Pruzan P, Klotz S, et al. Variation of interatomic distances in ice Ⅷ to 10 GPa[J]. Phys Rev B, 1994, 49(18): 12540. doi: 10.1103/PhysRevB.49.12540
    [27] Klotz S, Besson J M, Hamel G, et al. Neutron powder diffraction at pressures beyond 25 GPa[J]. Appl Phys Lett, 1995, 66(14): 1735-1737. doi: 10.1063/1.113350
    [28] Bull C L, Guthrie M, Klotz S, et al. Toroidal anvils for single-crystal neutron studies[J]. High Press Res, 2005, 25(4): 229-231. doi: 10.1080/08957950500452893
    [29] Fang J, Bull C L, Loveday J S, et al. Strength analysis and optimisation of double-toroidal anvils for high-pressure research[J]. Rev Sci Instrum, 2012, 83(9): 093902. doi: 10.1063/1.4746993
    [30] Klotz S, Hamel G, Frelat J. A new type of compact large-capacity press for neutron and X-ray scattering[J]. High Press Res, 2004, 24(1): 219-223. doi: 10.1080/08957950410001661963
    [31] Bromiley G D, Redfern S A T, Le Godec Y, et al. A portable high-pressure stress cell based on the V7 Paris-Edinburgh apparatus[J]. High Press Res, 2009, 29(2): 306-316. doi: 10.1080/08957950902747411
    [32] Fang J, Bull C L, Hamidov H, et al. A rotator for single-crystal neutron diffraction at high pressure[J]. Rev Sci Instrum, 2010, 81(11): 113901. doi: 10.1063/1.3494606
    [33] 孙樯, 郑海飞.金刚石压腔(DAC)实验技术[J].地学前缘, 2005, 12(1): 131-136. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201204015

    Sun Q, Zheng H F. An introduction to the experimental technology of diamond-anvil cell[J]. Earth Science Frontiers, 2005, 12(1): 131-136. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201204015
    [34] 谢鸿森.地球深部物质科学导论[M].北京: 科学出版社, 1997: 26-27.

    Xie H S. Materials Sciense of the Earth's Interior[M]. Beijing: Science Press, 1997: 26-27. (in Chinese)
    [35] Dewaele A, Loubeyre P, Mezouar M. Equations of state of six metals above 94 GPa[J]. Phys Rev B, 2004, 70: 094112. doi: 10.1103/PhysRevB.70.094112
    [36] Saul A, Wagner W. A fundamental equation for water covering the range from the melting line to 1 273 K at pressures up to 25 000 MPa[J]. J Phys Chem Ref Data, 1989, 18(4): 1537-1564. doi: 10.1063/1.555836
    [37] Wagner W, Saul A, Pruss A. International equations for the pressure along the melting and along the sublimation curve of ordinary water substance[J]. J Phys Chem Ref Data, 1994, 23(3): 515-527. doi: 10.1063/1.555947
    [38] Chen J, Zheng H, Xiao W, et al. High-temperature and high-pressure cubic zirconia anvil cell for Raman spectroscopy[J]. Appl Spect, 2003, 57(10): 1295-1299. doi: 10.1366/000370203769699199
    [39] Bundy F P, Bassett W A, Weathers M S, et al. The pressure-temperature phase and transformation diagram for carbon; updated through 1994[J]. Carbon, 1996, 34(2): 141-153. doi: 10.1016/0008-6223(96)00170-4
    [40] Shinoda K, Noguchi N. An induction heating diamond anvil cell for high pressure and temperature micro-Raman spectroscopic measurements[J]. Rev Sci Instrum, 2008, 79(1): 015101. doi: 10.1063/1.2827138
    [41] Heinz D L, Sweeney J S, Miller P. A laser heating system that stabilizes and controls the temperature: Diamond anvil cell applications[J]. Rev Sci Instrum, 1991, 62(6): 1568-1575. doi: 10.1063/1.1142434
    [42] Tateno S, Hirose K, Ohishi Y, et al. The structure of iron in Earth's inner core[J]. Science, 2010, 330(6002): 359-361. doi: 10.1126/science.1194662
    [43] Manga M, Jeanloz R. Axial temperature gradients in dielectric samples in the laser-heated diamond cell[J]. Geophys Res Lett, 1996, 23(14): 1845-1848. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=97375ea036844eff9595a102f7daec0d
    [44] Lee G W, Evans W J, Yoo C S. Crystallization of water in a dynamic diamond-anvil cell: Evidence for ice Ⅶ-like local order in supercompressed water[J]. Phys Rev B, 2006, 74(13): 134112. doi: 10.1103/PhysRevB.74.134112
    [45] Evans W J, Yoo C S, Lee G W, et al. Dynamic diamond anvil cell(dDAC): A novel device for studying the dynamic-pressure properties of materials[J]. Rev Sci Instrum, 2007, 78(7): 073904. doi: 10.1063/1.2751409
    [46] Irifune T, Kurio A, Sakamoto S, et al. Materials: Ultrahard polycrystalline diamond from graphite[J]. Nature, 2003, 421(6923): 599-600. http://europepmc.org/abstract/med/12571587
    [47] Nakamoto Y, Sakata M, Sumiya H, et al. Note: High-pressure generation using nano-polycrystalline diamonds as anvil materials[J]. Rev Sci Instrum, 2011, 82(6): 066104. doi: 10.1063/1.3600794
    [48] Sumiya H, Irifune T. Hardness and deformation microstructures of nano-polycrystalline diamonds synthesized from various carbons under high pressure and high temperature[J]. J Mater Res, 2007, 22(08): 2345-2351. http://journals.cambridge.org/abstract_S0884291400036384
    [49] Nakamoto Y, Sumiya H, Matsuoka T, et al. Generation of multi-megabar pressure using nano-polycrystalline diamond anvils[J]. Jpn J Appl Phys, 2007, 46(7L): L640. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1872133d5ddef00075998cd9a0fe720a
    [50] Dubrovinsky L, Dubrovinskaia N, Prakapenka V B, et al. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar[J]. Nature Commun, 2012, 3: 1163. doi: 10.1038/ncomms2160
    [51] Zhang X, Qin J, Liu H, et al. Pressure-induced zigzag phosphorus chain and superconductivity in boron monophosphide[J]. Sci Rep, 2015, 5: 8761. http://europepmc.org/articles/pmc4348669
    [52] Duan D, Liu Y, Tian F, et al. Pressure-induced metallization of dense(H2S)2H2 with high-Tc superconductivity[J]. Sci Rep, 2014, 4: 6968. http://europepmc.org/articles/PMC4225546
    [53] Li B, Huang G, Sun J, et al. Novel structural phases and superconductivity of iridium telluride under high pressures[J]. Sci Rep, 2014, 4: 6433. doi: 10.1038/srep06433
    [54] Shimizu K, Suhara K, Ikumo M, et al. Superconductivity in oxygen[J]. Nature, 1998, 393(6687): 767-769. doi: 10.1038/31656
    [55] Amaya K, Shimizu K. High pressure induced superconductivity[J]. Phys C: Superconduct Its Appl, 2003, 392: 17-21.
    [56] Kamihara Y, Watanabe T, Hirano M, et al. Iron-Based Layered Superconductor La[O1-xFx]FeAs(x=0.05-0.12)with Tc=26 K[J]. J Am Chem Soc, 2008, 130(11): 3296-3297. doi: 10.1021/ja800073m
    [57] 靳常青, 刘青清, 邓正, 等. "111"铁基超导体系的发现及压力效应研究[J].高压物理学报, 2013, 27(4): 473-480. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gywlxb201304001

    Jin C Q, Liu Q Q, Deng Z, et al. Effects of pressures on "111" iron-based superconductors[J]. Chinese Journal of High Pressure Physics, 2013, 27(4): 473-480. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gywlxb201304001
    [58] Wu J J, Lin J F, Wang X C, et al. Magnetic and structural transitions of SrFe2As2 at high pressure and low temperature[J]. Sci Rep, 2014, 4: 3685. http://www.ncbi.nlm.nih.gov/pubmed/24418845
    [59] Takahashi H, Soeda H, Nukii M, et al. Superconductivity at 52 K in hydrogen-substituted LaFeAsO1-xHx under high pressure[J]. Sci Rep, 2015, 5: 7829. doi: 10.1038/srep07829
    [60] 肖万生, 翁克难, 刘景, 等.高温高压微束衍射实验进展及其地学应用[J].地学前缘, 2005, 12(1): 102-114. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200501014

    Xiao W S, Weng K N, Liu J, et al. Progress in high-pressure and high-temperature experiments using micro beam X-ray diffraction technique and its applications to Earth sciences[J]. Earth Science Frontiers, 2005, 12(1): 102-114. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200501014
    [61] 刘川江, 郑海飞.金刚石压腔(DAC)技术及其在地球科学中的应用[J].地学前缘, 2012, 19(004): 141-150. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201204015

    Liu C J, Zheng H F. The technique of diamond anvil cell and its application to the geoscience[J]. Earth Science Frontiers, 2012, 19(4): 141-150. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201204015
    [62] Pippinger T, Miletich R, Burchard M. Multipurpose high-pressure high-temperature diamond-anvil cell with a novel high-precision guiding system and a dual-mode pressurization device[J]. Rev Sci Instrum, 2011, 82(9): 095108. doi: 10.1063/1.3629136
    [63] 陈晋阳, 张红, 肖万生, 等.金刚石压腔高温高压原位谱学研究的评述[J].光谱实验室, 2004, 21(2): 209-216. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpsys200402001

    Chen J Y, Zhang H, Xiao W S, et al. Review of diamond anvil cell for in-situ high-temperature and high-pressure spectroscopic study[J]. Chinese Journal of Spectroscopy Laboratory, 2004, 21(2): 209-216. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpsys200402001
    [64] Klotz S, Strassle T, Rousse G, et al. Angle-dispersive neutron diffraction under high pressure to 10 GPa[J]. Appl Phys Lett, 2005, 86(3): 031917. doi: 10.1063/1.1855419
    [65] Sterer E, Silvera I F. The c-DAC: A novel cubic diamond anvil cell with large sample volume/area and multidirectional optics[J]. Rev Sci Instrum, 2006, 77(11): 115105. doi: 10.1063/1.2387890
    [66] Abe J, Arakawa M, Hattori T, et al. A cubic-anvil high-pressure device for pulsed neutron powder diffraction[J]. Rev Sci Instrum, 2010, 81(4): 043910. doi: 10.1063/1.3384238
    [67] Utsumi W, Kagi H, Komatsu K, et al. Neutron powder diffraction under high pressure at J-PARC[J]. Nucl Instrum Meth Phys Res Sect A: Accel, Spectrom, Detect Assoc Equipm, 2009, 600(1): 50-52. doi: 10.1016/j.nima.2008.11.065
    [68] Yamada A, Matsubayashi K, Uwatoko Y, et al. Pressure-induced ferromagnetic to antiferromagnetic phase transition in Ce2Ni5C3[J]. Solid State Commun, 2010, 150(15): 725-728. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=43287cd74ec8fc26678d0d9d5452e6e1
    [69] Saitoh H, Abe J. High pressure and high temperature generation using small-sized cubic-type multi-anvil apparatus[J]. High Press Res, 2011, 31(3): 407-412. doi: 10.1080/08957959.2011.598153
    [70] Kawazoe T. A miniature cubic anvil apparatus for optical measurement under high pressure[J]. Rev Sci Instrum, 2012, 83(3): 035111. doi: 10.1063/1.3698206
  • 加载中
图(7)
计量
  • 文章访问数:  6403
  • HTML全文浏览量:  2330
  • PDF下载量:  114
出版历程
  • 收稿日期:  2015-02-12

目录

    /

    返回文章
    返回