四参数普适物态方程

陈俊祥 金柯 吴强

陈俊祥, 金柯, 吴强. 四参数普适物态方程[J]. 高压物理学报, 2014, 28(3): 293-299. doi: 10.11858/gywlxb.2014.03.005
引用本文: 陈俊祥, 金柯, 吴强. 四参数普适物态方程[J]. 高压物理学报, 2014, 28(3): 293-299. doi: 10.11858/gywlxb.2014.03.005
CHEN Jun-Xiang, JIN Ke, WU Qiang. Four-Parameter Universal Equation of State[J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 293-299. doi: 10.11858/gywlxb.2014.03.005
Citation: CHEN Jun-Xiang, JIN Ke, WU Qiang. Four-Parameter Universal Equation of State[J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 293-299. doi: 10.11858/gywlxb.2014.03.005

四参数普适物态方程

doi: 10.11858/gywlxb.2014.03.005
基金项目: 国防科技重点实验室基金(9140C670103120C6702)
详细信息
    作者简介:

    陈俊祥(1933—), 男,研究员,主要从事实验物态方程研究.E-mail:cjx621@163.com

  • 中图分类号: O521.2

Four-Parameter Universal Equation of State

  • 摘要: 多种材料的拉格朗日体模量都符合对压强展开到二阶项的关系。以此为基础,建立了一种四参数物态方程,比三参数物态方程适用压力宽、拟合精度高、外推性能好。方程参数关联一、二、三阶导数,根据Hugoniot方程与等熵方程的导数关系,可以检验动高压与静高压实验数据是否相互适合。方程以统一形式表述冲击、等熵和等温压缩状态,适用于多种材料、全压力区,是一种普适物态方程。公式简单、运算方便,克服了传统的四参数物态方程结构复杂、公式冗长以及参数间高度关联而失去实用意义的缺陷。

     

  • 图  5种金属体模量与压强的关系

    Figure  1.  Bulk modulus of the five metals as a function of pressure

    图  不同方程冲击压缩线外推比较

    Figure  2.  Comparison of the extrapolation Hugniot with different equations

    图  不同方程等温压缩线外推比较

    Figure  3.  Comparison of the extrapolation isothermal compession cuver with different equations

    图  (6) 式向负压区外推线

    Figure  4.  Extrapolation of Eq.(6) to the region of the negative pressure

    图  Cu的等熵线及冷压线

    Figure  5.  Isentrope and cold compression curve of the copper

    表  1  10种金属元素物态方程参数及其拉格朗日体模量参数

    Table  1.   Parameters of the equation of states and Lagrange bulk modulus of the ten metals

    Metal Parameters of the equation of states Fitting parameters of the Lagrange bulk modulus
    ρ0/(g/cm3) c0/(km/s) λ B0/(GPa) b a/(GPa-1)
    Li 0.530 4.580 1.150 10.525 5.017 0.067 6
    Mo 10.208 5.140 1.220 247.921 5.450 0.002 9
    W 19.200 4.040 1.230 286.548 5.515 0.002 5
    Ag 10.490 3.270 1.550 36.865 8.669 0.006 5
    Ta 16.656 3.430 1.190 173.261 5.259 0.004 1
    Metal ρ0K/(g/cm3) K0 K0 B0/(GPa) b a/(GPa-1)
    Na 1.017 7.352 3.946 7.312 4.921 0.051 0
    Mo 10.235 271.255 3.878 269.697 4.860 0.001 4
    Pt 21.574 286.467 4.879 285.469 5.752 0.001 0
    Au 19.433 185.132 5.146 184.708 5.981 0.001 4
    Pd 12.080 196.744 5.201 196.263 6.031 0.001 3
    下载: 导出CSV

    表  2  (6) 式与不同方程对数据的拟合比较

    Table  2.   Comparison of the fitting using Eq.(6) and others

    Metal Eq.(6) Eq.(7)
    p/(GPa) q s C2 R2 c0/(km/s) λ λ C2 R2
    Cu-pH -24.860 0.046 5.530 11.310 0.999 2 4.113 1.399 0.0159 12.038 0.999 2
    Fe-pH -10.427 0.002 8.675 22.525 0.998 1 3.660 1.806 -0.041 21.515 0.998 2
    Eq.(4)
    B0/(GPa) B0 C2 R2
    Cu-pT -17.858 -0.024 7.237 0.877 0.999 3 131.701 5.332 0.913 0.999 2
    Fe-pT -21.845 0.008 6.617 17.974 0.998 5 139.192 6.365 17.861 0.998 5
    下载: 导出CSV
  • [1] 吴强.金属材料高压物态方程及Grüneisen系数的研究[D].绵阳: 中国工程物理研究院, 2004: 30-62.

    Wu Q. Studies on equation of state and Grüneisen parameter for metals at high pressures and temperatures[D]. Mianyang: China Academy of Engineering Physics, 2004: 30-62. (in Chinese)
    [2] 吴强, 经褔谦, 李欣竹.零温物态方程输入参数的确定[J].高压物理学报, 2005, 19(2): 97-104. http://www.cqvip.com/Main/Detail.aspx?id=15776594

    Wu Q, Jing F Q, Li X Z. Determination of the input parameters for 0 K universal isothermal equation of state[J]. Chinese Journal of High Pressure Physics, 2005, 19(2): 97-104. (in Chinese) http://www.cqvip.com/Main/Detail.aspx?id=15776594
    [3] 陈俊祥, 孙峪怀, 刘福生.一种指数式等温方程[J].应用物理, 2012, 2(3): 89-91. http://www.oalib.com/paper/287722

    Chen J X, Sun Y H, Liu F S. One new isotherm equation expressed in exp form[J]. Appl Phys, 2012, 2(3): 89-91. (in Chinese) http://www.oalib.com/paper/287722
    [4] 唐志平.冲击相变[M].北京: 科学出版社, 2008: 7-8.

    Tang Z P. Shock Induced Phase Transition[M]. Beijing: Science Press, 2008: 7-8. (in Chinese)
    [5] Mitchell A C, Nellis W J. Shock compression of aluminum, copper and tantalum[J]. J Appl Phys, 1981, 52(5): 3363-3374. doi: 10.1063/1.329160
    [6] Brown J M, Fritz J N, Hixson R S. Hugoniot data for iron[J]. J Appl Phys, 2000, 88(9): 5496-5498. doi: 10.1063/1.1319320
    [7] Rose J H, Smith J R, Guinea F, et al. Universal features of the equation of state of metals[J]. Phys Rev B, 1984, 29(6): 2963-2969. doi: 10.1103/PhysRevB.29.2963
    [8] Mao H K, Bell P M, Shaner J W, et al. Specific volume measurements of Cu, Mo, W, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar[J]. J Appl Phys, 1987, 49(6): 3276-3283. doi: 10.1063/1.325277
    [9] Mao H K, Wu Y, Chen L C, et al. Static compression of iron to 300 GPa and Fe0.8Ni0.2 Alloy to 260 GPa: Implications for composition of the core[J]. J Geophys Res, 1990, 95: 21737-21742. doi: 10.1029/JB095iB13p21737
    [10] Anderson O L, Dubrovinsky L, Saxena S K, et al. Experimental vibrational Grüneisen ratio values for ε-iron up to 330 GPa at 300 K[J]. Geophys Res Lett, 2001, 28: 399-402. doi: 10.1029/2000GL008544
    [11] Wang G J, Luo B Q, Zhang X P, et al. A 4 MA, 500 ns pulsed generator CQ-4 for characterization of material behaviors under ramp wave loading[J]. Rev Sci Instrum, 2013, 84: 015117. doi: 10.1063/1.4788935
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  6346
  • HTML全文浏览量:  2104
  • PDF下载量:  418
出版历程
  • 收稿日期:  2012-12-26
  • 修回日期:  2013-05-29

目录

    /

    返回文章
    返回