泡沫铝柱壳对药柱水下爆炸压力场影响的数值研究

倪小军 马宏昊 沈兆武 李磊

倪小军, 马宏昊, 沈兆武, 李磊. 泡沫铝柱壳对药柱水下爆炸压力场影响的数值研究[J]. 高压物理学报, 2014, 28(2): 175-182. doi: 10.11858/gywlxb.2014.02.007
引用本文: 倪小军, 马宏昊, 沈兆武, 李磊. 泡沫铝柱壳对药柱水下爆炸压力场影响的数值研究[J]. 高压物理学报, 2014, 28(2): 175-182. doi: 10.11858/gywlxb.2014.02.007
NI Xiao-Jun, MA Hong-Hao, SHEN Zhao-Wu, LI Lei. Effects of Al Foam on Pressure Fields of Underwater Explosion[J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 175-182. doi: 10.11858/gywlxb.2014.02.007
Citation: NI Xiao-Jun, MA Hong-Hao, SHEN Zhao-Wu, LI Lei. Effects of Al Foam on Pressure Fields of Underwater Explosion[J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 175-182. doi: 10.11858/gywlxb.2014.02.007

泡沫铝柱壳对药柱水下爆炸压力场影响的数值研究

doi: 10.11858/gywlxb.2014.02.007
基金项目: 国家自然科学基金面上项目(51174183);国家自然科学基金重点项目(51134012);安徽省教育厅安徽省高等学校省级自然科学研究项目重大项目(KJ2010ZD003)
详细信息
    作者简介:

    倪小军(1982—), 男,博士研究生,主要从事爆炸力学与安全防护研究.E-mail:nixj@mail.ustc.edu.cn

  • 中图分类号: O383.1

Effects of Al Foam on Pressure Fields of Underwater Explosion

  • 摘要: 基于流体弹塑性模型,建立了描述泡沫铝在爆炸载荷下的冲击响应方程;采用Lagrange差分格式,在均匀网格上对方程进行了离散;编写数值计算程序,进行了药柱水下爆炸的一维数值计算,重点考虑了泡沫铝对水中爆炸冲击波分布的影响。结果表明,数值计算结果与实验数据、LS-DYNA模拟结果基本吻合,证明所建立的泡沫铝流体弹塑性本构方程可以用来描述泡沫铝的冲击响应行为,且泡沫铝对水中爆炸冲击波压力场的影响显著。

     

  • 图  药柱爆炸后水中不同位置处的压力-时间曲线

    Figure  1.  Pressure-time curves of shock wave at different locations in the water after explosion

    图  压力峰值随距离变化的曲线

    Figure  2.  Curves of peak pressure versus distance

    图  冲击波经壁厚1.15 cm泡沫铝后在水中不同位置处的压力-时间曲线

    Figure  3.  Pressure-time curves of shock wave through the 1.15 cm-thick Al foam in the water

    图  冲击波经壁厚2.15 cm泡沫铝后在水中不同位置处的压力-时间曲线

    Figure  4.  Pressure-time curves of shock wave through the 2.15 cm-thick Al foam in the water

    图  压力峰值随距离变化的曲线(d=1.15 cm)

    Figure  5.  Curves of peak pressure versus distance (d=1.15 cm)

    图  压力峰值随距离变化的曲线(d=2.15 cm)

    Figure  6.  Curves of peak pressure versus distance (d=2.15 cm)

    图  压力峰值随距离变化曲线

    Figure  7.  Curves of peak pressure versus distance

    图  压力峰值衰减量随距离变化曲线

    Figure  8.  Curves of attenuation of pressure versus distance

    表  1  PETN材料参数

    Table  1.   PETN material parameters

    ρ/
    (g/cm3)
    D/
    (m/s)
    pH/
    (GPa)
    k
    0.88 5 170 6.2 2.5
    下载: 导出CSV

    表  2  泡沫铝材料参数

    Table  2.   Al foam material parameters

    ρ/
    (g/cm3)
    C0/
    (m/s)
    λ γ G/
    (MPa)
    Y/
    (MPa)
    0.48 519 1.29 1.58 50 6.5
    下载: 导出CSV

    表  3  距离药柱50 cm处不同方法所得峰值压力的比较

    Table  3.   Comparison between results ofpeak pressure at the distance of 50 cmaway from the grain center

    FD Formula LS-DYNA Experiment
    6.113 6.433 5.725 6.357
    下载: 导出CSV

    表  4  实验和计算结果的比较

    Table  4.   Comparision between computation results and experiment data

    No. d/
    (cm)
    Test pressure[21]/
    (MPa)
    Mean value[21]/
    (MPa)
    Peak pressure of
    FD/(MPa)
    Peak pressure of
    LS-DYNA/(MPa)
    1 1.15 3.208
    2 1.15 2.798 2.729 2.632 2.516
    3 1.15 2.181
    4 2.15 0.832
    5 2.15 0.582 0.664 0.639 0.503
    6 2.15 0.577
    下载: 导出CSV
  • [1] Pattofatto S, Elnasri I, Zhao H, et al. Shock enhancement of cellular structures under impact loading: Part Ⅱ analysis[J]. J Mech Phys Solids, 2007, 55(12): 2672-2686. doi: 10.1016/j.jmps.2007.04.004
    [2] 王永刚, 胡时胜, 王礼立.爆炸荷载下泡沫铝材料中冲击波衰减特性的实验和数值模拟研究[J].爆炸与冲击, 2003, 23(6): 516-522. http://www.cqvip.com/Main/Detail.aspx?id=8790616

    Wang Y G, Hu S S, Wang L L. Shock attenuation in aluminum foams under explosion loading[J]. Explosion and Shock Waves, 2003, 23(6): 516-522. (in Chinese) http://www.cqvip.com/Main/Detail.aspx?id=8790616
    [3] 田杰.泡沫铝的冲击波衰减和抗震特性研究[D].合肥: 中国科学技术大学, 2006.

    Tian J. The shock wave attenuation and anti-detonation property of aluminum foam[D]. Hefei: University of Science and Technology of China, 2006. (in Chinese)
    [4] 李顺波, 东兆星, 齐燕军, 等.水下爆炸冲击波在含吸收层结构中的传播规律的数值模拟[J].高压物理学报, 2009, 23(5): 360-366. http://d.wanfangdata.com.cn/Periodical/gywlxb200905007

    Li S B, Dong Z X, Qi Y J, et al. Numerical simulation on propagation of underwater blast shock wave in absorber structure[J]. Chinese Journal of High Pressure Physics, 2009, 23(5): 360-366. (in Chinese) http://d.wanfangdata.com.cn/Periodical/gywlxb200905007
    [5] Hageman L J, Walsh J M. Help: a multi-material Euler program for compressible fluid and elastic-plastic flow in two space dimensions and time, 35R-350[R]. Aberdeen: Ballistic Research Laboratories, 1971.
    [6] Wilkins M L. Computer Simulation of Dynamic Phenomena[M]. Livermore: Spring-Verlag, 1999.
    [7] Hallquist J O. LS-DYNA Theory Manual[M]. Livermore: Livermore Software Technology Corporation, 2006.
    [8] Miller G H, Colella P. A high-order Eulerian Godunov method for elastic-plastic flow in solids[J]. J Comput Phys, 2001, 167(1): 131-176. http://www.sciencedirect.com/science/article/pii/S0021999100966658
    [9] 周钟, 王肖钧, 肖卫国.水饱和花岗岩本构模型及地下爆炸波的数值研究[J].计算力学学报, 2008, 24(6): 880-886. http://d.wanfangdata.com.cn/Periodical/jslxxb200706030

    Zhou Z, Wang X J, Xiao W G. Constitutive model of water-saturated granite with application to numerical study on underground explosion[J]. Chinese Journal of Computational Mechanic, 2008, 24(6): 880-886. (in Chinese) http://d.wanfangdata.com.cn/Periodical/jslxxb200706030
    [10] Wang J T, Liu K X, Zhang D L. An improved CE/SE scheme for multi-material elastic-plastic flows and its applications[J]. Comput Fluids, 2009, 38(3): 544-551. doi: 10.1016/j.compfluid.2008.04.014
    [11] Wilkins M L. Calculation of elastic-plastic flow, LA-7322[R]. California: California Univ Livermore Radiation Lab, 1969.
    [12] Wilkins M L. Use of artificial viscosity in multi-dimensional fluid dynamic calculations[J]. J Comput Phys, 1980, 36(3): 281-303. doi: 10.1016/0021-9991(80)90161-8
    [13] 李德元.二维非定常流体力学数值方法[M].北京: 科学技术出版社, 1987: 95-98.

    Li D Y. Computational Methods of Two-Dimensional Unsteady Fluid Dynamics[M]. Beijing: Science and Technology Press, 1987: 95-98. (in Chinese)
    [14] Kinslow R. High-Velocity Impact Phenomena[M]. New York: Academic Press, 1970.
    [15] 周钟, 王肖钧, 赵凯, 等.水饱和岩石中爆炸应力波传播的数值模拟[J].爆炸与冲击, 2005, 25(4): 296-302. http://www.cqvip.com/Main/Detail.aspx?id=20109786

    Zhou Z, Wang X J, Zhao K, et al. Numerical simulation for blast wave in water saturated rock[J]. Explosion and Shock Waves, 2005, 25(4): 296-302. (in Chinese) http://www.cqvip.com/Main/Detail.aspx?id=20109786
    [16] Gibson L J, Ashby M F. Cellular Solids: Structure and Properties[M]. Cambridge: Cambridge University Press, 1997.
    [17] 汤文辉, 张若棋.物态方程理论及计算概论[M].北京: 高等教育出版社, 2008.

    Tang W H, Zhang R Q. Introduction to Computing on Equation of State[M]. Beijing: Higher Education Press, 2008. (in Chinese)
    [18] Batsanov S S. Effects of Explosions on Materials: Modification and Synthesis under High-Pressure Shock Compression[M]. New York: Springer-Verlag, 1994.
    [19] 谭华.实验冲击波物理导引[M].北京: 国防工业出版社, 2007: 15-34.

    Tan H. Introduction to Experimental Shock-Wave Physics[M]. Beijing: National Defense Industry Press, 2007: 15-34. (in Chinese)
    [20] 傅华, 李金河, 谭多望, 等.未反应炸药冲击绝热线的近似计算[J].高压物理学报, 2008, 22(3): 329-332. http://www.cnki.com.cn/Article/CJFDTotal-GYWL200803020.htm

    Fu H, Li J H, Tan D W, et al. Calculation of the Hugoniot of unreacted explosives[J]. Chinese Journal of High Pressure Physics, 2008, 22(3): 329-332. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-GYWL200803020.htm
    [21] 倪小军, 沈兆武, 杨昌德.泡沫铝壳对水下爆炸冲击波衰减的影响[J].含能材料, 2011, 19(3): 315-320. http://d.wanfangdata.com.cn/Periodical/hncl201103016

    Ni X J, Shen Z W, Yang C D. Influence of aluminum foams shell on shock attenuation underwater explosions[J]. Chinese Journal of Energetic Materials, 2011, 19(3): 315-320. (in Chinese) http://d.wanfangdata.com.cn/Periodical/hncl201103016
    [22] 赵继波, 谭多望, 李金河, 等. TNT药柱水中爆炸近场压力轴向衰减规律[J].爆炸与冲击, 2009, 28(6): 539-543. http://www.cnki.com.cn/Article/CJFDTotal-BZCJ200806009.htm

    Zhao J B, Tan D W, Li J H, et al. Axial pressure damping of cylindrical TNT charges in thenear under water explosion field[J]. Explosion and Shock Waves, 2009, 28(6): 539-543. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-BZCJ200806009.htm
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  7054
  • HTML全文浏览量:  2173
  • PDF下载量:  248
出版历程
  • 收稿日期:  2012-02-22
  • 修回日期:  2013-09-17

目录

    /

    返回文章
    返回